

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

CP2K – Scalable Atomistic Simulation for the PRACE
Community

Iain Bethunea*, Adam Cartera, Kevin Stratforda, Paschalis Korosogloub,c
aEPCC, The University of Edinburgh, James Clerk Maxwell Buidling, The King’s Buildings, Edinburgh, EH9 3JZ, United Kingdom

bAUTH, Aristotle University of Thessaloniki, Thessaloniki 52124, Greece
cGRNET, Greek Research & Technology Network, L. Mesogeion 56, Athens 11527, Greece

Abstract

This report describes the work undertaken under PRACE-1IP to support the European scientific communities who make use
of CP2K in their research. This was done in two ways – firstly, by improving the performance of the code for a wide range of
usage scenarios. The updated code was then tested and installed on the PRACE CURIE supercomputer. We believe this
approach both supports existing user communities by delivering better application performance, and demonstrates to
potential users the benefits of using optimized and scalable software like CP2K on the PRACE infrastructure.

Application Code: CP2K

1. Project Overview

CP2K [1] is a freely available program (under GPL), written in Fortran 95, to perform atomistic and
molecular simulations of solid state, liquid, molecular and biological systems. It provides a general framework
for different methods such as density functional theory (DFT) using a mixed Gaussian and plane waves approach
(GPW), and classical pair and many-body potentials. Recently, linear-scaling DFT and Møller-Plesset 2nd order
perturbation (MP2) methods have been added, broadening the applicability of the code to a wider range of users.

CP2K is a popular and important code for materials science, life sciences and computational chemistry
throughout Europe, and it supports the work of many research communities. In the UK, there are many users in
the Material Chemistry HPC Consortium, led by University College London, and the code is the third most
heavily used on HECToR, the UK National HPC Service. CP2K also dominates usage on the Cray XT/XE
systems at CSCS, Switzerland. Citations of the main CP2K paper in Computer Physics Communications [1]
indicate a wide and growing user base, and the code is also used by researchers under the DEISA and
HPCEuropa-2 projects, and INCITE grant winners in the US.

One feature of CP2K which makes it a particularly important code with regards to use on Petascale systems in
PRACE is its excellent scalability. Results showing scalability on tens of thousands of CPU cores are in the
public domain [2] and we demonstrated similar performance on the PRACE system JUGENE in a previous
PRACE project [3]. This is achieved in part by a hybrid MPI/OpenMP parallelization approach, which allows
the power of large numbers of CPU cores to be harnessed while reducing the impact of algorithms which scale
less than linearly with the number of MPI processes used. In some cases such as Hartree-Fock Exchange (HFX)
calculations, using OpenMP is required to allow each process to access the entire memory of a compute node in

* Corresponding author. E-mail address: ibethune@epcc.ed.ac.uk

CP2K – Scalable Atomistic Simulation for the PRACE Community

2

order to store tables of commonly re-used integrals, which provides excellent performance. We also assert that
hybrid MPI/OpenMP maps well to the fat-node architecture of modern multi-core node supercomputers such as
CURIE and HERMIT, where MPI can be used between NUMA regions (and compute nodes), and OpenMP
within a single NUMA region.

Therefore, to best support the user communities of CP2K, this project ported and tested CP2K on the CURIE
PRACE system. In addition, we have improved and extended the implementation of OpenMP within the code,
focusing on several areas where we believed performance or scalability was an issue.

2. Porting CP2K to CURIE

The initial steps towards porting CP2K to the CURIE Tier-0 system were the compilation of the libint and the
libsmm libraries.

Libint is comprised of C/C++ functions for the efficient evaluation of two-body molecular integrals. The
libint source files are available through Sourceforge [4] but one may also find prebuilt packages of the library for
various Operating Systems. To build libint from source two different compiler options were considered - the
GNU compiler collection (version 4.5.1) and the Intel compiler suite (the default on CURIE).

Libsmm is a library for identifying and selecting the most efficient strategy for the multiplication of small
matrix blocks (2x2, 3x3, 5x5, 7x7 etc.) that occur frequently in CP2K. Essentially, at compile-time, it makes a
comparison between various generated multiplication kernels and the BLAS dgemm implementation and
chooses the fastest method for each block size of interest. The libsmm source files are available directly within
the CP2K source tree under ${CP2K_ROOT}/tools/build_libsmm. To build libsmm one configuration
file config.in containing information regarding the compiler and BLAS libraries to be compared and the total
number of tasks to be used has to be edited. The configuration files used for building libsmm on CURIE for the
GNU Compiler Suite and the Intel Compiler Suite are included in Appendix A. Once the configuration file is
ready the procedure of building libsmm involves the submission of a batch job allocating a full CURIE node.
The code generation and testing procedure takes place in parallel, and can take up to several hours depending on
the number of block sizes considered.

Initially three different configurations (compilers, libraries etc) have been considered for compiling CP2K on
the CURIE Tier-0 system. These are:

 GNU Compiler Suite for both CP2K and for building all required libraries (i.e. BLAS, LAPACK etc)

 GNU Compiler Suite for building CP2K, libint and libsmm and usage of prebuild MKL (Intel Math
Kernel Library) libraries during linking stage

 Intel Compiler Suite for building CP2K, libint and libsmm and usage of prebuild MKL libraries during
linking stage

Notice that for the first configuration several additional libraries had to be build from scratch as these were
not available on the CURIE headnode. These were:

 BLAS
 LAPACK
 ScaLAPACK
 BLACS
 FFTW3

For each one of these three configurations appropriate CP2K arch files have been developed and used in order
to produce three versions of CP2K per configuration (thus resulting in a total of nine executables). These three
versions are appended the name extension sopt (for the serial version), popt (for the MPI only version) and psmp
(for the hybrid MPI+OpenMP version).

Using the regression test suite provided with the CP2K source code we have been able to test these nine
versions of the application. The CP2K regression test suite is based on a batch submission script that needs to be
modified depending on the queuing system used. For testing the serial versions of CP2K (sopt) one compute
node per run was allocated. Within the script 32 concurrent and asynchronous processes were used to run the
tests in a parallel manner. For testing the parallel versions of CP2K (popt and psmp) 4 cpu cores were allocated
per run. In this case, the tests were not executed concurrently but rather sequentially.

CP2K – Scalable Atomistic Simulation for the PRACE Community

3

When running CP2K regression tests for the first time the outcome of most of the test results are marked as
NEW (unless the test failed outright), since there is no reference result to compare to. Depending on the results
of subsequent runs the tests are either marked as CORRECT, WRONG or FAILED depending on whether the
outcome (per test) is the same with the first one (CORRECT), whether it differs by any amount from the first one
(WRONG) and whether the test has finished unsuccessfully (FAILED). The tests using the psmp version of
CP2K build with the Intel Compiler Suite have not been run to completion since for several test files the
execution stalled (did not progress from some point on) until eventually the job was terminated by the batch
system. This problem is still under investigation. For the remaining versions of CP2K available to us the initial

results taken are shown in Figure 1.

Notice that for the psmp versions the relatively high number of WRONG results is due to numerical errors
(driven by the non-deterministic aspects of shared memory parallelization such as dynamic task scheduling and
reduction operations). These errors are relatively small in magnitude and thus they may be safely ignored.

In order to obtain some preliminary benchmark results a small benchmark CP2K input file H2O-64 was used
which performs 10 MD steps on a system of 64 water molecules in a 12.42 Å cubic cell. Using this input file we
quickly noted that the parallel versions built with the GNU Compiler Suite could not be executed on more than
one compute node. This was due to certain MPI calls being made using Fortran array constructors which caused
a crash in the Bull MPI library. A fix for this behavior was made and committed to the CP2K repository.
However, several more problems with the GNU compiled versions linked with the custom build linear algebra
libraries (BLAS, LAPACK etc) were identified thus further investigations using this configuration of CP2K were
dropped.

Using the psmp version of CP2K build with the GNU Compiler Suite and linked with the prebuild MKL
libraries and the 2 MPI only versions (popt) compiled with the GNU and Intel Compiler Suites respectively the
performance results displayed in Figure 2 have been calculated. We note that for this small test case the scaling
of the performance is not expected to be good when using more than 2 CURIE nodes (64 cores), but gives an
estimate of how good each compiler is at serial optimization of the code.

Figure 1: Initial results of CP2K regression test suite

CP2K – Scalable Atomistic Simulation for the PRACE Community

4

After updating the source code with the changes described above and after dropping further investigations on
the versions of CP2K linked with the custom built BLAS and LAPACK libraries a complete regression test was
resubmitted. The results of this new test are shown in Figure 3. Once again the numerical errors when using the
MPI+OpenMP version were investigated and it was concluded that these could be safely ignored. The arch files
used to build these 5 “production” CP2K binaries are given in Appendix B.

Figure 3: Final CP2K regression test suite results

Figure 2: Performance results of CP2K on CURIE

CP2K – Scalable Atomistic Simulation for the PRACE Community

5

3. Using OpenMP in CP2K for improved scalability on multi-core clusters

Prior work by the author [5][6] has already introduced or improved OpenMP parallelisation in various areas
of CP2K. However, it has also identified several other region of code which take up significant amounts of time
for certain calculations and for which OpenMP parallelization could be added or improved. The work done to
address these areas is detailed in the following sections.

3.1. Exchange-correlation functionals

An important part of any Density Functional Theory calculation is the contribution to the energy caused by
the interactions between pairs of electrons, approximated in DFT by the Exchange-Correlation functional. There
are many variants of these in use, which may give more accurate energies for certain types of system. In CP2K
26 different functionals are implemented, and can be selected by the XC_FUNCTIONAL keyword in a CP2K
input file. One of the most commonly used (the PBE functional) was parallelized in [5], but many of the others
were not, or were only partially parallelized.

After surveying the current state of OpenMP for each XC functional, we fully parallelized all the functionals
using OpenMP, and validated the results of these changes by running the CP2K regression test suite. A summary
of the changes made can be found in Table 1.

Table 1. Overview of parallelization of XC functionals

Input keyword File OpenMP state

BECKE88 xc_xbecke88.F Refactored

BECKE88_LR Xc_xbecke88_long_range.F Added

BECKE88_LR_ADIABATIC xc_xbecke88_lr_adiabatic.F Added

BECKE_ROUSSEL xc_b97.F Added

BECKE97 xc_xbecke_roussel.F Added

CS1 xc_cs1.f Completed

GV09 xc_xbr_pbe_lda_hole_t_c_lr.F Added

HCTH xc_hcth.F Present

KE_GGA xc_ke_gga.F Completed

LDA_HOLE_T_C_LR xc_xlda_hole_t_c_lr.F Added

LYP xc_lyp.F Added

LYP_ADIABATIC xc_lyp_adiabatic.F Added

OPTX xc_optx.F Added

P86C xc_perdew86.F Present

PADE xc_pade.F Present

PBE xc_pbe.F Present

PBE_HOLE_T_C_LR xc_xpbe_hole_t_c_lr.F Added

PW92 xc_perdew_wang.G Present

PZ81 xc_perdew_zunger.F Present

TF xc_thomas_fermi.F Present

TFW xc_ftw.F Present

TPSS xc_tpss.F Completed

VWN xc_vwn.F Completed

XALPHA xc_xalpha.F Present

XGGA xc_exchange_gga.F Completed

XWPBE xc_xwpbe.F Added

The OpenMP performance obtained was overall very good. For two typical examples taken from the CP2K

test directories QS/regtest-hole-funct and QS/regtest-hybrid we show the time taken and

CP2K – Scalable Atomistic Simulation for the PRACE Community

6

speedup for various numbers of threads in Table 2. These tests were run on a Cray XE6 with 24 cores per node
(two 12-core processors). Achieving over 95% efficiency within a single NUMA region, and up to 92% across
an entire node is an excellent result and will ensure that XC functional evaluation is much less likely to
contribute significantly to the runtime of simulations using hybrid MPI and OpenMP.

Table 2. XC functional OpenMP performance

Number of Threads 1 2 4 6 8 12 16 24

H2O_GV09_1.0.inp (Time / s) 26.7 13.4 6.8 4.6 3.5 2.4 1.8 1.2

(Speedup) 1.00 1.99 3.90 5.79 7.72 11.43 15.14 22.14

Li-hybrid-rcam-b3lyp.inp (Time /s) 5.32 2.69 1.38 0.94 0.72 0.50 0.40 -

(Speedup) 1.00 1.98 3.85 5.65 7.39 10.57 13.33 -

3.2. Realspace grid operations

Another key element within CP2K is the use of realspace grids, which are a key step in the transformation
from the plane-wave basis (stored as complex values on planewave grids), to the atom-centered Gaussian basis
(stored as coefficients in a sparse matrix). In the routine calculate_rho_elec, Gaussian basis functions are
received in matrix form and are written to the realspace grids in parallel by the team of OpenMP threads. Details
of how this is achieved can be found in [5], but since in general each Gaussian can overlap any other, each thread
writes to its own copy of the grids (the lgrid), which are then summed onto the final, output grid. This had
been observed to be a costly operation which did not scale well with increasing numbers of OpenMP threads, so
it was proposed to replace the existing reduction algorithm with a tree-based one which would minimize the total
volume of data copied, and in particular reduce copies from one NUMA region to another.

Three new tree-reduction algorithms were implemented and compared with the existing implementation,
hereafter referred to as Version 0.

In Version 1 the strategy was for each thread to take responsibility for a given region of the real space grid,
and accumulate the total to the first lgrid. This has the advantage that it is in principle load balanced for even
numbers of threads, and dealing with unusual numbers of threads is painless. The disadvantage is that each
thread must read data from (and write read to) other threads’ lgrid. This is illustrated in Figure 4. For four
threads there are two levels of the tree. The first level (top) includes two copies for each thread. The z-
decomposition of the local grid is represented in the vertical direction, with each thread being responsible for a
fixed portion

Figure 4: Schematic of tree reduction (Version 1)

CP2K – Scalable Atomistic Simulation for the PRACE Community

7

In Version 2 an attempt was made to achieve some data locality like the original implementation. At each
level, a subset of the threads works on a given lgrid. Care must be taken that it does not exceed the number of
threads available at that level when there are non power-of-two numbers of threads. This is illustrated in Figure
5. At level 1, thread 0 and thread 1 are responsible for the accumulations between lgrid 0 and lgrid 1, and
so on. Contiguous regions of the lgrid are coalesced into a single copy (using daxpy()).

In Version 3 each entire lgrid is accumulated by the “owning” thread. This leaves progressively more
threads without work. Even-numbered threads perform a single daxpy() at the different levels. This is
illustrated in Figure 6.

The performance of each of the versions was measured using the aforementioned H2O-64 input file, running
on 36 MPI tasks with a varying number of OpenMP threads. The time taken for the reduction operation is shown
in Table 3. Note that Versions 2 and 3 scale much better when there are more threads than in a single NUMA
region. Version 2 was selected as it performed marginally better than Version 3, both of which were a significant

5igure 5: Schematic of tree reduction (Version 2)

Figure 6: Schematic of tree reduction (Version 3)

CP2K – Scalable Atomistic Simulation for the PRACE Community

8

improvement over the original implementation.

Table 3. Comparison of time taken (seconds) for parallel grid reduction algorithms

Number of Threads 1 2 4 6 8 12 16 24

Version 0 0.0000019 0.0028 0.0040 0.0059 0.0069 0.0082 0.011 0.013

Version 1 0.0000027 0.0026 0.0037 0.0052 0.0069 0.0097 0.011 0.013

Version 2 0.0000028 0.0029 0.0038 0.0058 0.0062 0.0072 0.0071 0.0083

Version 3 0.0000027 0.0026 0.0039 0.0061 0.0062 0.0073 0.0073 0.0084

As a side-effect of the detailed profiling carried out during the development of the new grid reduction

algorithm, it was observed that the main performance bottleneck in calculate_rho_elec was not the
reduction, but in fact the initial zeroing of the lgrids before new data is written to them. The cause of this
behavior is due to the fact that the lgrids are local variables and are allocated, used, and deallocated each time
calculate_rho_elec is called. Since the lgrids are in fact a large shared array (to facilitate the
reduction), rather than OpenMP private arrays, this means they are allocated once outside the parallel region, and
then the first time they are accessed by the team of threads (during the zeroing), there is a large cost associated
with pulling data which is local to thread 0 - the allocating thread - into the thread’s own local cache hierarchy.

To avoid this, a refactoring of the realspace grid types was made so that the lgrids (and the rs_grids) are
no longer repeatedly created and destroyed, but rather persist for the lifetime of the application. As well as
amortising the large ‘first access’ cost for the lgrids, this also saves a great deal of memory allocation and
deallocation. The effect of this change can be clearly seen in Figure 7, giving around a 10x speedup over the
original code.

One final optimization was implemented in this region of the code. In the routine distribute_matrix all
the matrix data required for each process to complete its assigned tasks of mapping Gaussians onto the realspace
grid is packed into a buffer and distributed via an MPI_Alltoallv call. However, due to the construction of
the domain decomposition, most processes already have most of the data they need, and only a relatively small
fraction of the data is actually sent to or received from remote processes. For the local data, there is no need to
pack it into the buffer and unpack it again, so potentially two large data copies can be avoided. In addition, since
the packing and unpacking is done in a parallel loop over processes, having a single process with much more
data that the others causes severe thread load-imbalance when using the default static OpenMP loop schedule.

0�

0.02�

0.04�

0.06�

0.08�

0.1�

0.12�

0� 4� 8� 12� 16� 20� 24�

Ze
ro
in
g�
C
o
st
�(
s)
�

Threads�

Original�

Refactored�

Figure 7: Comparison of lgrid initialisation costs in original code vs refactored version

CP2K – Scalable Atomistic Simulation for the PRACE Community

9

By avoiding copying the local data, approximately 5% improvement was observed for the H2O-64 test case
when running on a single thread per process, rising to 35% on 8 threads. In principle, this data is no longer
required to be passed to the MPI_alltoallv (which might save a further copy within MPI), but in practice it
was found that omitting the data (i.e. setting the local send and recv sizes to 0) actually caused the
MPI_alltoallv to take twice as long. This is believed to be because reducing the data size causes MPI to
choose a different, less efficient communication algorithm. Since the local copy is essentially free - it takes less
time than the latency for the remote data to arrive - a compromise was made where the MPI_alltoallv still
handles the large local data block, but it is never read or written by the packing and unpacking loops.

3.3. Core Hamiltonian calculations

Calculation of the Core Hamiltonian matrix can take a significant amount of time for certain calculations,
particularly those with large basis sets, or when using OpenMP since there was no existing OpenMP
parallelization in this region of the code. The goal was to introduce OpenMP loop-level parallelisation to the
build_core_ppl subroutine in the file core_ppl.F. It was known that the program spent a considerable
amount of time in this loop and furthermore, the approach used here could be adapted with only minimal
changes in other parts of the code.

The main change to the code is the introduction of a parallel region around a loop over all of the particles in a
neighbor list, that is the loop beginning, “DO WHILE
(neighbor_list_iterate(nl_iterator)==0)”. One of the main challenges in such a parallelisation
is determining the breakdown between shared and private variables. The choice as to which class the variables
fall into was determined through inspection of the code. Also, the code uses an iterator object to iterate over a
fairly complex data structure, so it is difficult to tell a priori to what extent the iterations of the loop are
independent.

It was determined from inspection of the code, and from examining the output from instrumented test runs,
that it was possible to break down the iterations of the loop into independent tasks each corresponding to one or
more iterations of the original loop. The modification to the code therefore consists of:

 Introducing a new data structure to hold the data describing a task

 Iterating over the data structure in serial, building an array of tasks

 Introducing a parallel region around a new loop which loops over the independent tasks

In fact, the tasks are not completely independent, as they all update a shared array force containing forces
between particles. This is accounted for by introducing OpenMP critical regions within the parallel region
around the relevant updates.

Figure 7: Performance comparisons of original and modified code. (a) 16 MPI processes, varying number of threads; (b) 512 total cores,
varying number of MPI processes and threads

The performance of the code was measured in a series of timing runs performed on the HECToR Test and
Development system (TDS) using the H2O-dfs-ls-2 benchmark, a linear-scaling DFT calculation of 256

CP2K – Scalable Atomistic Simulation for the PRACE Community

10

water molecules using the MOLOPT basis set distributed with CP2K. Tests were performed with the modules
listed in Appendix C. During the course of the work described here, the HECToR TDS contained nodes with
either AMD Magny-Cours or Interlagos processors. The results described here were obtained using only the
newer Interlagos nodes. These are similar to the processors found in the PRACE HERMIT Tier-0 system.
Timings were obtained by inserting CrayPAT calls around the whole of the contents of the build_core_ppl
routine, and show the performance of this region in isolation from the rest of the code. Results are shown in
Figure 7.

The results imply that, for a fixed number of MPI processes, there is a performance benefit from running with
two or four cores per process. It also appears that by running on 32 threads per process, a performance benefit
can be obtained. It is not understood why the performance is worse for 8 and 16 threads than it is for 32 threads.

Other than the speedup observed with two and four threads per process, the speed-up results were
disappointing, so an alternative parallelisation was also attempted. After further inspection of the code, it
appeared that it would be possible to use the iterator as it currently exists in the code from within a parallel
region, using its optional arguments to specify the thread from which it was being accessed. The planned
changes were made to the code but unfortunately this version of the code does not yet work, crashing when it is
run. Some work was put in to debug the code, but without success. Further effort would be required in order to
debug the code in order to find the cause of the crash.

4. Conclusion

As a result of continued PRACE support through Task 7.2 (“Applications Enabling with Communities”) in
the 1st implementation phase (PRACE-1IP), we have improved the performance of CP2K by additional
parallelization and optimization targeted at mixed-mode OpenMP/MPI usage of the code, suitable more multi-
core HPC platforms such as the CURIE and HERMIT systems available to the PRACE community. Specifically,
we have parallelized the full range of 24 Exchange-Correlation (XC) functionals available in CP2K, which will
give better performance across a wider range of use cases that are of interest to the materials science and
computational chemistry communities. We have also improved the performance of key grid operations which are
core to the Quickstep DFT implementation – these will impact almost all users of the code. Thanks to ongoing
close collaboration with the CP2K development team, these improvements have been incorporated in the CP2K
source code, and are already available to users of the code. Work was begun on parallelization of the core
Hamiltonian calculation, but the expected performance improvement was not obtained, and work is ongoing to
resolve this.

To maximize the benefits to the scientific communities supported by PRACE, a recent version of CP2K has
been installed on the CURIE system and is centrally available to all users via the module environment. We hope
this report will help emphasise to the user community the benefits of using optimized and scalable software like
CP2K on the PRACE infrastructure. As a result of this work, a successful Preparatory Access Type C project
(“High Performance MP2 for condensed phase simulations”) has been awarded, allowing us to provide further
development directly in support of ongoing research using CP2K.

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework
Programme (FP7/2007-2013) under grant agreement no. RI-211528 and FP7-261557. The work is achieved
using the PRACE Research Infrastructure resources CURIE (CEA, France).

We are very grateful to Prof. Joost VandeVondele (ETH Zürich) and Prof. Jürg Hutter (Univ. Zürich) for help
and advice on code development and for access to the Cray XE6 at CSCS for development and testing.

CP2K – Scalable Atomistic Simulation for the PRACE Community

11

References

1. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, J. VandeVondele,

M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, Comp. Phys. Comm. 167, 103 (2005).

2. CP2K: High Performance Computing, http://www.nanosim.mat.ethz.ch/research/CP2K

3. Million Atom KS-DFT with CP2K, Iain Bethune, Adam Carter, Xu Guo, and Paschalis Korosoglou, 2012,

http://www.training.prace-ri.eu/uploads/tx_pracetmo/CP2K.pdf

4. Libint library, http://sourceforge.net/projects/libint/

5. Improving the scalability of CP2K on multi-core systems: A dCSE Project, 2010,
http://www.hector.ac.uk/cse/distributedcse/reports/cp2k02/cp2k02_final_report.pdf

6. CP2K - Sparse Linear Algebra on 1000s of cores: A dCSE Project, 2012,
http://www.hector.ac.uk/cse/distributedcse/reports/cp2k03/cp2k03.pdf

CP2K – Scalable Atomistic Simulation for the PRACE Community

12

Appendix A

Configure file used for building libsmm using GNU Compiler suite and MKL libraries on CURIE:

Configure file used for building libsmm using Intel Compiler suite and MKL libraries on CURIE:

transpose_flavor=1
data_type=1
target_compile="gfortran -O2 -funroll-loops -ffast-math -ftree-vectorize -march=native -
fno-inline-functions"
OMP_NUM_THREADS=1
blas_linking="$MKL_LIBS"
dims_small="1 4 5 6 9 13 16 17 22"
dims_tiny="1 2 3 4 5 6 7 8 9 10 11 12"
host_compile="gfortran "
tasks=32

transpose_flavor=1
data_type=1
target_compile="ifort -O2 -unroll -xSSE4.2"
OMP_NUM_THREADS=1
blas_linking="$MKL_LIBS"
dims_small="1 4 5 6 9 13 16 17 22"
dims_tiny="1 2 3 4 5 6 7 8 9 10 11 12"
host_compile="gfortran "
tasks=32

CP2K – Scalable Atomistic Simulation for the PRACE Community

13

Appendix B

Arch file used for building serial version (sopt) using GNU Compiler suite and MKL libraries on CURIE:

On CURIE use the following commands prior to make:

$ module load fftw3
$ module load gnu

CC = cc
CPP =
FC = gfortran
LD = gfortran
AR = ar -r
CPPFLAGS = -I$(FFTW3_INC_DIR)
DFLAGS = -D__GFORTRAN -D__FFTSG -D__FFTW3 -D__HAS_smm_dnn -D__LIBINT
FCFLAGS = $(CPPFLAGS) $(DFLAGS) -O2 -ffast-math -funroll-loops -ftree-vectorize -
march=native -ffree-form
LDFLAGS = $(FCFLAGS)
LIBS = $(MKL_LIBS) \
 $(FFTW3_LIB_DIR)/libfftw3.a \
 $(WORKDIR)/libssm/gfortran-mkl/lib/libsmm_dnn.a \
 $(WORKDIR)/libint/gnu/lib/libderiv.a \
 $(WORKDIR)/libint/gnu/lib/libint.a \
 -lstdc++

OBJECTS_ARCHITECTURE = machine_gfortran.o

CP2K – Scalable Atomistic Simulation for the PRACE Community

14

Arch file used for building MPI only version (popt) using GNU Compiler suite and MKL libraries on

CURIE:

On CURIE use the following commands prior to make:

$ module load fftw3
$ module load gcc
$ export OMPI_MPIFC=gfortran

CC = cc
CPP =
FC = mpif90
LD = mpif90
AR = ar -r
CPPFLAGS = -I$(FFTW3_INC_DIR)
DFLAGS = -D__GFORTRAN -D__FFTSG -D__parallel -D__BLACS -D__SCALAPACK -D__FFTW3 -
D__HAS_smm_dnn -D__LIBINT
FCFLAGS = $(CPPFLAGS) $(DFLAGS) -O2 -ffast-math -funroll-loops -ftree-vectorize -
march=native -ffree-form
LDFLAGS = $(FCFLAGS)
LIBS = $(MKL_SCA_LIBS) \
 $(FFTW3_LIB_DIR)/libfftw3.a \
 $(WORKDIR)/libssm/gfortran-mkl/lib/libsmm_dnn.a \
 $(WORKDIR)/libint/gnu/lib/libderiv.a \
 $(WORKDIR)/libint/gnu/lib/libint.a \
 -lstdc++

OBJECTS ARCHITECTURE = machine gfortran.o

CP2K – Scalable Atomistic Simulation for the PRACE Community

15

Arch file used for building MPI+OpenMP version (psmp) using GNU Compiler suite and MKL libraries on
CURIE:

On CURIE use the following commands prior to make:

$ module load fftw3
$ module load gcc
$ export OMPI_MPIFC=gfortran

CC = cc
CPP =
FC = mpif90 -fopenmp
LD = mpif90 -fopenmp
AR = ar -r
CPPFLAGS = -I$(FFTW3_INC_DIR)
DFLAGS = -D__GFORTRAN -D__FFTSG -D__parallel -D__BLACS -D__SCALAPACK -D__FFTW3 -
D__LIBINT
FCFLAGS = $(CPPFLAGS) $(DFLAGS) -O3 -ffast-math -funroll-loops -ftree-vectorize -
march=native -ffree-form
LDFLAGS = $(FCFLAGS)
LIBS = $(MKL_SCA_LIBS) \
 $(FFTW3_LIB_DIR)/libfftw3.a \
 $(WORKDIR)/libssm/gfortran-mkl/lib/libsmm_dnn.a \
 $(WORKDIR)/libint/gnu/lib/libderiv.a \
 $(WORKDIR)/libint/gnu/lib/libint.a \
 -lstdc++

OBJECTS ARCHITECTURE = machine gfortran.o

CP2K – Scalable Atomistic Simulation for the PRACE Community

16

Arch file used for building serial version (sopt) using Intel Compiler suite and MKL libraries on CURIE:

On CURIE use the following commands prior to make:

$ module load fftw3

CC = cc
CPP = cpp
FC = ifort
LD = ifort
AR = ar -r
DFLAGS = -D__INTEL -D__FFTSG -D__FFTW3 -D__HAS_smm_dnn -D__LIBINT
CPPFLAGS = -C -traditional $(DFLAGS) -I$(FFTW3_INC_DIR)
FCFLAGS = $(DFLAGS) -O2 -xSSE4.2 -heap-arrays 64 -funroll-loops -fpp -free
FCFLAGS2 = $(DFLAGS) -O1 -xSSE4.2 -heap-arrays 64 -fpp -free
LDFLAGS = $(FCFLAGS)
LIBS = $(MKL_LIBS) \
 -L$(FFTW3_LIB_DIR) -lfftw3 \
 -L$(WORKDIR)/libssm/intel/lib -lsmm_dnn \
 -L$(WORKDIR)/libint/intel/lib -lderiv -lint -lstdc++

OBJECTS_ARCHITECTURE = machine_intel.o

graphcon.o: graphcon.F
 $(FC) -c $(FCFLAGS2) $<

qs_vxc_atom.o: qs_vxc_atom.F
 $(FC) -c $(FCFLAGS2) $<

CP2K – Scalable Atomistic Simulation for the PRACE Community

17

Arch file used for building the MPI only version (popt) using Intel Compiler suite and MKL libraries on
CURIE:

On CURIE use the following commands prior to make:

$ module load fftw3

CC = cc
CPP = cpp
FC = mpif90
LD = mpif90
AR = ar -r
DFLAGS = -D__INTEL -D__FFTSG -D__parallel -D__BLACS -D__SCALAPACK -D__FFTW3 -
D__HAS_smm_dnn -D__LIBINT
CPPFLAGS = -C -traditional $(DFLAGS) -I$(FFTW3_INC_DIR)
FCFLAGS = $(DFLAGS) -O2 -xSSE4.2 -heap-arrays 64 -funroll-loops -fpp -free
FCFLAGS2 = $(DFLAGS) -O1 -xSSE4.2 -heap-arrays 64 -fpp -free
LDFLAGS = $(FCFLAGS)
LIBS = $(MKL_SCA_LIBS) \
 -L$(FFTW3_LIB_DIR) -lfftw3 \
 -L$(WORKDIR)/libssm/intel/lib -lsmm_dnn \
 -L$(WORKDIR)/libint/intel/lib -lderiv -lint -lstdc++

OBJECTS_ARCHITECTURE = machine_intel.o

graphcon.o: graphcon.F
 $(FC) -c $(FCFLAGS2) $<

qs_vxc_atom.o: qs_vxc_atom.F
 $(FC) -c $(FCFLAGS2) $<

CP2K – Scalable Atomistic Simulation for the PRACE Community

18

Appendix C
This appendix shows the modules loaded during measurements of the performance of build_core_ppl.

Currently Loaded Modulefiles:

 1) modules/3.2.6.6 15) xt-mpich2/5.4.3

 2) nodestat/2.2-1.0400.29866.4.3.gem 16) atp/1.4.2

 3) sdb/1.0-1.0400.30000.6.18.gem 17) xt-asyncpe/5.07

 4) MySQL/5.0.64-1.0000.4667.20.1 18) pmi/3.0.0-1.0000.8661.28.2807.gem

 5) lustre-cray_gem_s/1.8.4_2.6.32.45_0.3.2_1.0400.6221.1.1-1.0400.30252.1.29 19) xt-libsci/11.0.05

 6) udreg/2.3.1-1.0400.3911.5.6.gem 20) gcc/4.6.2

 7) ugni/2.3-1.0400.3912.4.29.gem 21) pbs/11.2.0.113417

 8) gni-headers/2.1-1.0400.3906.5.1.gem 22) packages-phase2b

 9) dmapp/3.2.1-1.0400.3965.10.12.gem 23) budgets/1.0

 10) xpmem/0.1-2.0400.29883.4.6.gem 24) xtpe-interlagos

 11) hss-llm/6.0.0 25) fftw/3.3.0.0

 12) Base-opts/1.0.2-1.0400.29823.8.1.gem 26) papi/4.2.0

 13) xtpe-network-gemini 27) perftools/5.3.0

 14) PrgEnv-gnu/4.0.30

