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Abstract 

This report describes the work undertaken under PRACE-1IP to support the European scientific communities who make use 
of CP2K in their research. This was done in two ways – firstly, by improving the performance of the code for a wide range of 
usage scenarios. The updated code was then tested and installed on the PRACE CURIE supercomputer. We believe this 
approach both supports existing user communities by delivering better application performance, and demonstrates to 
potential users the benefits of using optimized and scalable software like CP2K on the PRACE infrastructure. 
 

Application Code: CP2K 

1. Project Overview 

CP2K [1] is a freely available program (under GPL), written in Fortran 95, to perform atomistic and 
molecular simulations of solid state, liquid, molecular and biological systems. It provides a general framework 
for different methods such as density functional theory (DFT) using a mixed Gaussian and plane waves approach 
(GPW), and classical pair and many-body potentials. Recently, linear-scaling DFT and Møller-Plesset 2nd order 
perturbation (MP2) methods have been added, broadening the applicability of the code to a wider range of users. 

CP2K is a popular and important code for materials science, life sciences and computational chemistry 
throughout Europe, and it supports the work of many research communities. In the UK, there are many users in 
the Material Chemistry HPC Consortium, led by University College London, and the code is the third most 
heavily used on HECToR, the UK National HPC Service. CP2K also dominates usage on the Cray XT/XE 
systems at CSCS, Switzerland. Citations of the main CP2K paper in Computer Physics Communications [1] 
indicate a wide and growing user base, and the code is also used by researchers under the DEISA and 
HPCEuropa-2 projects, and INCITE grant winners in the US. 

One feature of CP2K which makes it a particularly important code with regards to use on Petascale systems in 
PRACE is its excellent scalability. Results showing scalability on tens of thousands of CPU cores are in the 
public domain [2] and we demonstrated similar performance on the PRACE system JUGENE in a previous 
PRACE project [3]. This is achieved in part by a hybrid MPI/OpenMP parallelization approach, which allows 
the power of large numbers of CPU cores to be harnessed while reducing the impact of algorithms which scale 
less than linearly with the number of MPI processes used. In some cases such as Hartree-Fock Exchange (HFX) 
calculations, using OpenMP is required to allow each process to access the entire memory of a compute node in 
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order to store tables of commonly re-used integrals, which provides excellent performance. We also assert that 
hybrid MPI/OpenMP maps well to the fat-node architecture of modern multi-core node supercomputers such as 
CURIE and HERMIT, where MPI can be used between NUMA regions (and compute nodes), and OpenMP 
within a single NUMA region. 

Therefore, to best support the user communities of CP2K, this project ported and tested CP2K on the CURIE 
PRACE system. In addition, we have improved and extended the implementation of OpenMP within the code, 
focusing on several areas where we believed performance or scalability was an issue. 

2. Porting CP2K to CURIE 

The initial steps towards porting CP2K to the CURIE Tier-0 system were the compilation of the libint and the 
libsmm libraries.  

Libint is comprised of C/C++ functions for the efficient evaluation of two-body molecular integrals. The 
libint source files are available through Sourceforge [4] but one may also find prebuilt packages of the library for 
various Operating Systems. To build libint from source two different compiler options were considered - the 
GNU compiler collection (version 4.5.1) and the Intel compiler suite (the default on CURIE).  

Libsmm is a library for identifying and selecting the most efficient strategy for the multiplication of small 
matrix blocks (2x2, 3x3, 5x5, 7x7 etc.) that occur frequently in CP2K. Essentially, at compile-time, it makes a 
comparison between various generated multiplication kernels and the BLAS dgemm implementation and 
chooses the fastest method for each block size of interest. The libsmm source files are available directly within 
the CP2K source tree under ${CP2K_ROOT}/tools/build_libsmm. To build libsmm one configuration 
file config.in containing information regarding the compiler and BLAS libraries to be compared and the total 
number of tasks to be used has to be edited. The configuration files used for building libsmm on CURIE for the 
GNU Compiler Suite and the Intel Compiler Suite are included in Appendix A. Once the configuration file is 
ready the procedure of building libsmm involves the submission of a batch job allocating a full CURIE node. 
The code generation and testing procedure takes place in parallel, and can take up to several hours depending on 
the number of block sizes considered.  

Initially three different configurations (compilers, libraries etc) have been considered for compiling CP2K on 
the CURIE Tier-0 system. These are: 

 GNU Compiler Suite for both CP2K and for building all required libraries (i.e. BLAS, LAPACK etc) 

 GNU Compiler Suite for building CP2K, libint and libsmm and usage of prebuild MKL (Intel Math 
Kernel Library) libraries during linking stage 

 Intel Compiler Suite for building CP2K, libint and libsmm and usage of prebuild MKL libraries during 
linking stage 

Notice that for the first configuration several additional libraries had to be build from scratch as these were 
not available on the CURIE headnode. These were: 

 BLAS 
 LAPACK 
 ScaLAPACK 
 BLACS 
 FFTW3 

For each one of these three configurations appropriate CP2K arch files have been developed and used in order 
to produce three versions of CP2K per configuration (thus resulting in a total of nine executables). These three 
versions are appended the name extension sopt (for the serial version), popt (for the MPI only version) and psmp 
(for the hybrid MPI+OpenMP version).  

Using the regression test suite provided with the CP2K source code we have been able to test these nine 
versions of the application. The CP2K regression test suite is based on a batch submission script that needs to be 
modified depending on the queuing system used. For testing the serial versions of CP2K (sopt) one compute 
node per run was allocated. Within the script 32 concurrent and asynchronous processes were used to run the 
tests in a parallel manner. For testing the parallel versions of CP2K (popt and psmp) 4 cpu cores were allocated 
per run. In this case, the tests were not executed concurrently but rather sequentially.  
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When running CP2K regression tests for the first time the outcome of most of the test results are marked as 
NEW (unless the test failed outright), since there is no reference result to compare to. Depending on the results 
of subsequent runs the tests are either marked as CORRECT, WRONG or FAILED depending on whether the 
outcome (per test) is the same with the first one (CORRECT), whether it differs by any amount from the first one 
(WRONG) and whether the test has finished unsuccessfully (FAILED). The tests using the psmp version of 
CP2K build with the Intel Compiler Suite have not been run to completion since for several test files the 
execution stalled (did not progress from some point on) until eventually the job was terminated by the batch 
system. This problem is still under investigation. For the remaining versions of CP2K available to us the initial 

results taken are shown in Figure 1.  

Notice that for the psmp versions the relatively high number of WRONG results is due to numerical errors 
(driven by the non-deterministic aspects of shared memory parallelization such as dynamic task scheduling and 
reduction operations). These errors are relatively small in magnitude and thus they may be safely ignored.  

In order to obtain some preliminary benchmark results a small benchmark CP2K input file H2O-64 was used 
which performs 10 MD steps on a system of 64 water molecules in a 12.42 Å cubic cell. Using this input file we 
quickly noted that the parallel versions built with the GNU Compiler Suite could not be executed on more than 
one compute node. This was due to certain MPI calls being made using Fortran array constructors which caused 
a crash in the Bull MPI library. A fix for this behavior was made and committed to the CP2K repository. 
However, several more problems with the GNU compiled versions linked with the custom build linear algebra 
libraries (BLAS, LAPACK etc) were identified thus further investigations using this configuration of CP2K were 
dropped.  

Using the psmp version of CP2K build with the GNU Compiler Suite and linked with the prebuild MKL 
libraries and the 2 MPI only versions (popt) compiled with the GNU and Intel Compiler Suites respectively the 
performance results displayed in Figure 2 have been calculated. We note that for this small test case the scaling 
of the performance is not expected to be good when using more than 2 CURIE nodes (64 cores), but gives an 
estimate of how good each compiler is at serial optimization of the code.  

Figure 1: Initial results of CP2K regression test suite 
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After updating the source code with the changes described above and after dropping further investigations on 
the versions of CP2K linked with the custom built BLAS and LAPACK libraries a complete regression test was 
resubmitted. The results of this new test are shown in Figure 3. Once again the numerical errors when using the 
MPI+OpenMP version were investigated and it was concluded that these could be safely ignored. The arch files 
used to build these 5 “production” CP2K binaries are given in Appendix B.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Final CP2K regression test suite results 

Figure 2: Performance results of CP2K on CURIE 
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3. Using OpenMP in CP2K for improved scalability on multi-core clusters 

Prior work by the author [5][6] has already introduced or improved OpenMP parallelisation in various areas 
of CP2K. However, it has also identified several other region of code which take up significant amounts of time 
for certain calculations and for which OpenMP parallelization could be added or improved. The work done to 
address these areas is detailed in the following sections. 

3.1. Exchange-correlation functionals 

An important part of any Density Functional Theory calculation is the contribution to the energy caused by 
the interactions between pairs of electrons, approximated in DFT by the Exchange-Correlation functional. There 
are many variants of these in use, which may give more accurate energies for certain types of system. In CP2K 
26 different functionals are implemented, and can be selected by the XC_FUNCTIONAL keyword in a CP2K 
input file. One of the most commonly used (the PBE functional) was parallelized in [5], but many of the others 
were not, or were only partially parallelized. 

After surveying the current state of OpenMP for each XC functional, we fully parallelized all the functionals 
using OpenMP, and validated the results of these changes by running the CP2K regression test suite. A summary 
of the changes made can be found in Table 1. 

Table 1. Overview of parallelization of XC functionals 

Input keyword File OpenMP state 

BECKE88 xc_xbecke88.F Refactored 

BECKE88_LR Xc_xbecke88_long_range.F Added 

BECKE88_LR_ADIABATIC xc_xbecke88_lr_adiabatic.F Added 

BECKE_ROUSSEL  xc_b97.F Added 

BECKE97 xc_xbecke_roussel.F Added 

CS1 xc_cs1.f Completed 

GV09 xc_xbr_pbe_lda_hole_t_c_lr.F Added 

HCTH xc_hcth.F Present 

KE_GGA xc_ke_gga.F Completed 

LDA_HOLE_T_C_LR xc_xlda_hole_t_c_lr.F Added 

LYP xc_lyp.F Added 

LYP_ADIABATIC xc_lyp_adiabatic.F Added 

OPTX xc_optx.F Added 

P86C xc_perdew86.F Present 

PADE xc_pade.F Present 

PBE xc_pbe.F Present 

PBE_HOLE_T_C_LR xc_xpbe_hole_t_c_lr.F Added 

PW92 xc_perdew_wang.G Present 

PZ81 xc_perdew_zunger.F Present 

TF xc_thomas_fermi.F Present 

TFW xc_ftw.F Present 

TPSS xc_tpss.F Completed 

VWN xc_vwn.F Completed 

XALPHA xc_xalpha.F Present 

XGGA xc_exchange_gga.F Completed 

XWPBE xc_xwpbe.F Added 

 
The OpenMP performance obtained was overall very good. For two typical examples taken from the CP2K 

test directories QS/regtest-hole-funct and QS/regtest-hybrid we show the time taken and 
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speedup for various numbers of threads in Table 2. These tests were run on a Cray XE6 with 24 cores per node 
(two 12-core processors). Achieving over 95% efficiency within a single NUMA region, and up to 92% across 
an entire node is an excellent result and will ensure that XC functional evaluation is much less likely to 
contribute significantly to the runtime of simulations using hybrid MPI and OpenMP.  

Table 2. XC functional OpenMP performance 
 

Number of Threads 1 2 4 6 8 12 16 24 

H2O_GV09_1.0.inp (Time / s) 26.7 13.4 6.8 4.6 3.5 2.4 1.8 1.2 

(Speedup) 1.00 1.99 3.90 5.79 7.72 11.43 15.14 22.14 

Li-hybrid-rcam-b3lyp.inp (Time /s) 5.32 2.69 1.38 0.94 0.72 0.50 0.40 - 

(Speedup) 1.00 1.98 3.85 5.65 7.39 10.57 13.33 - 

 

3.2. Realspace grid operations 

Another key element within CP2K is the use of realspace grids, which are a key step in the transformation 
from the plane-wave basis (stored as complex values on planewave grids), to the atom-centered Gaussian basis 
(stored as coefficients in a sparse matrix). In the routine calculate_rho_elec, Gaussian basis functions are 
received in matrix form and are written to the realspace grids in parallel by the team of OpenMP threads. Details 
of how this is achieved can be found in [5], but since in general each Gaussian can overlap any other, each thread 
writes to its own copy of the grids (the lgrid), which are then summed onto the final, output grid. This had 
been observed to be a costly operation which did not scale well with increasing numbers of OpenMP threads, so 
it was proposed to replace the existing reduction algorithm with a tree-based one which would minimize the total 
volume of data copied, and in particular reduce copies from one NUMA region to another. 

Three new tree-reduction algorithms were implemented and compared with the existing implementation, 
hereafter referred to as Version 0. 

In Version 1 the strategy was for each thread to take responsibility for a given region of the real space grid, 
and accumulate the total to the first lgrid. This has the advantage that it is in principle load balanced for even 
numbers of threads, and dealing with unusual numbers of threads is painless. The disadvantage is that each 
thread must read data from (and write read to) other threads’ lgrid. This is illustrated in Figure 4. For four 
threads there are two levels of the tree. The first level (top) includes two copies for each thread. The z-
decomposition of the local grid is represented in the vertical direction, with each thread being responsible for a 
fixed portion 

 

Figure 4: Schematic of tree reduction (Version 1) 
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In Version 2 an attempt was made to achieve some data locality like the original implementation. At each 
level, a subset of the threads works on a given lgrid. Care must be taken that it does not exceed the number of 
threads available at that level when there are non power-of-two numbers of threads. This is illustrated in Figure 
5. At level 1, thread 0 and thread 1 are responsible for the accumulations between lgrid 0 and lgrid 1, and 
so on. Contiguous regions of the lgrid are coalesced into a single copy (using daxpy()). 

In Version 3 each entire lgrid is accumulated by the “owning” thread. This leaves progressively more 
threads without work. Even-numbered threads perform a single daxpy() at the different levels. This is 
illustrated in Figure 6. 

The performance of each of the versions was measured using the aforementioned H2O-64 input file, running 
on 36 MPI tasks with a varying number of OpenMP threads. The time taken for the reduction operation is shown 
in Table 3. Note that Versions 2 and 3 scale much better when there are more threads than in a single NUMA 
region. Version 2 was selected as it performed marginally better than Version 3, both of which were a significant 

5igure 5: Schematic of tree reduction (Version 2) 

Figure 6: Schematic of tree reduction (Version 3) 
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improvement over the original implementation. 

Table 3. Comparison of time taken (seconds) for parallel grid reduction algorithms 

Number of Threads 1 2 4 6 8 12 16 24 

Version 0 0.0000019 0.0028 0.0040 0.0059 0.0069 0.0082 0.011 0.013 

Version 1 0.0000027 0.0026 0.0037 0.0052 0.0069 0.0097 0.011 0.013 

Version 2 0.0000028 0.0029 0.0038 0.0058 0.0062 0.0072 0.0071 0.0083 

Version 3 0.0000027 0.0026 0.0039 0.0061 0.0062 0.0073 0.0073 0.0084 

 
As a side-effect of the detailed profiling carried out during the development of the new grid reduction 

algorithm, it was observed that the main performance bottleneck in calculate_rho_elec was not the 
reduction, but in fact the initial zeroing of the lgrids before new data is written to them. The cause of this 
behavior is due to the fact that the lgrids are local variables and are allocated, used, and deallocated each time 
calculate_rho_elec is called. Since the lgrids are in fact a large shared array (to facilitate the 
reduction), rather than OpenMP private arrays, this means they are allocated once outside the parallel region, and 
then the first time they are accessed by the team of threads (during the zeroing), there is a large cost associated 
with pulling data which is local to thread 0 - the allocating thread - into the thread’s own local cache hierarchy. 

To avoid this, a refactoring of the realspace grid types was made so that the lgrids (and the rs_grids) are 
no longer repeatedly created and destroyed, but rather persist for the lifetime of the application. As well as 
amortising the large ‘first access’ cost for the lgrids, this also saves a great deal of memory allocation and 
deallocation. The effect of this change can be clearly seen in Figure 7, giving around a 10x speedup over the 
original code. 

One final optimization was implemented in this region of the code. In the routine distribute_matrix all 
the matrix data required for each process to complete its assigned tasks of mapping Gaussians onto the realspace 
grid is packed into a buffer and distributed via an MPI_Alltoallv call. However, due to the construction of 
the domain decomposition, most processes already have most of the data they need, and only a relatively small 
fraction of the data is actually sent to or received from remote processes. For the local data, there is no need to 
pack it into the buffer and unpack it again, so potentially two large data copies can be avoided. In addition, since 
the packing and unpacking is done in a parallel loop over processes, having a single process with much more 
data that the others causes severe thread load-imbalance when using the default static OpenMP loop schedule. 
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By avoiding copying the local data, approximately 5% improvement was observed for the H2O-64 test case 
when running on a single thread per process, rising to 35% on 8 threads. In principle, this data is no longer 
required to be passed to the MPI_alltoallv (which might save a further copy within MPI), but in practice it 
was found that omitting the data (i.e. setting the local send and recv sizes to 0) actually caused the 
MPI_alltoallv to take twice as long. This is believed to be because reducing the data size causes MPI to 
choose a different, less efficient communication algorithm. Since the local copy is essentially free - it takes less 
time than the latency for the remote data to arrive - a compromise was made where the MPI_alltoallv still 
handles the large local data block, but it is never read or written by the packing and unpacking loops. 

3.3. Core Hamiltonian calculations 

Calculation of the Core Hamiltonian matrix can take a significant amount of time for certain calculations, 
particularly those with large basis sets, or when using OpenMP since there was no existing OpenMP 
parallelization in this region of the code. The goal was to introduce OpenMP loop-level parallelisation to the 
build_core_ppl subroutine in the file core_ppl.F. It was known that the program spent a considerable 
amount of time in this loop and furthermore, the approach used here could be adapted with only minimal 
changes in other parts of the code. 

The main change to the code is the introduction of a parallel region around a loop over all of the particles in a 
neighbor list, that is the loop beginning, “DO WHILE 
(neighbor_list_iterate(nl_iterator)==0)”. One of the main challenges in such a parallelisation 
is determining the breakdown between shared and private variables. The choice as to which class the variables 
fall into was determined through inspection of the code. Also, the code uses an iterator object to iterate over a 
fairly complex data structure, so it is difficult to tell a priori to what extent the iterations of the loop are 
independent. 

It was determined from inspection of the code, and from examining the output from instrumented test runs, 
that it was possible to break down the iterations of the loop into independent tasks each corresponding to one or 
more iterations of the original loop. The modification to the code therefore consists of: 

 Introducing a new data structure to hold the data describing a task 

 Iterating over the data structure in serial, building an array of tasks 

 Introducing a parallel region around a new loop which loops over the independent tasks 

In fact, the tasks are not completely independent, as they all update a shared array force containing forces 
between particles. This is accounted for by introducing OpenMP critical regions within the parallel region 
around the relevant updates.  

Figure 7: Performance comparisons of original and modified code. (a) 16 MPI processes, varying number of threads; (b) 512 total cores, 
varying number of MPI processes and threads 

The performance of the code was measured in a series of timing runs performed on the HECToR Test and 
Development system (TDS) using the H2O-dfs-ls-2 benchmark, a linear-scaling DFT calculation of 256 
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water molecules using the MOLOPT basis set distributed with CP2K. Tests were performed with the modules 
listed in Appendix C. During the course of the work described here, the HECToR TDS contained nodes with 
either AMD Magny-Cours or Interlagos processors. The results described here were obtained using only the 
newer Interlagos nodes. These are similar to the processors found in the PRACE HERMIT Tier-0 system. 
Timings were obtained by inserting CrayPAT calls around the whole of the contents of the build_core_ppl 
routine, and show the performance of this region in isolation from the rest of the code. Results are shown in 
Figure 7.  

The results imply that, for a fixed number of MPI processes, there is a performance benefit from running with 
two or four cores per process. It also appears that by running on 32 threads per process, a performance benefit 
can be obtained. It is not understood why the performance is worse for 8 and 16 threads than it is for 32 threads. 

Other than the speedup observed with two and four threads per process, the speed-up results were 
disappointing, so an alternative parallelisation was also attempted. After further inspection of the code, it 
appeared that it would be possible to use the iterator as it currently exists in the code from within a parallel 
region, using its optional arguments to specify the thread from which it was being accessed. The planned 
changes were made to the code but unfortunately this version of the code does not yet work, crashing when it is 
run. Some work was put in to debug the code, but without success. Further effort would be required in order to 
debug the code in order to find the cause of the crash. 

4. Conclusion 

As a result of continued PRACE support through Task 7.2 (“Applications Enabling with Communities”) in 
the 1st implementation phase (PRACE-1IP), we have improved the performance of CP2K by additional 
parallelization and optimization targeted at mixed-mode OpenMP/MPI usage of the code, suitable more multi-
core HPC platforms such as the CURIE and HERMIT systems available to the PRACE community. Specifically, 
we have parallelized the full range of 24 Exchange-Correlation (XC) functionals available in CP2K, which will 
give better performance across a wider range of use cases that are of interest to the materials science and 
computational chemistry communities. We have also improved the performance of key grid operations which are 
core to the Quickstep DFT implementation – these will impact almost all users of the code. Thanks to ongoing 
close collaboration with the CP2K development team, these improvements have been incorporated in the CP2K 
source code, and are already available to users of the code. Work was begun on parallelization of the core 
Hamiltonian calculation, but the expected performance improvement was not obtained, and work is ongoing to 
resolve this. 

To maximize the benefits to the scientific communities supported by PRACE, a recent version of CP2K has 
been installed on the CURIE system and is centrally available to all users via the module environment. We hope 
this report will help emphasise to the user community the benefits of using optimized and scalable software like 
CP2K on the PRACE infrastructure. As a result of this work, a successful Preparatory Access Type C project 
(“High Performance MP2 for condensed phase simulations”) has been awarded, allowing us to provide further 
development directly in support of ongoing research using CP2K. 
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Appendix A 

Configure file used for building libsmm using GNU Compiler suite and MKL libraries on CURIE: 
 

 

 

Configure file used for building libsmm using Intel Compiler suite and MKL libraries on CURIE: 
 

 

transpose_flavor=1 
data_type=1 
target_compile="gfortran -O2 -funroll-loops -ffast-math -ftree-vectorize -march=native -
fno-inline-functions" 
OMP_NUM_THREADS=1 
blas_linking="$MKL_LIBS" 
dims_small="1 4 5 6 9 13 16 17 22" 
dims_tiny="1 2 3 4 5 6 7 8 9 10 11 12" 
host_compile="gfortran " 
tasks=32 

transpose_flavor=1 
data_type=1 
target_compile="ifort -O2 -unroll -xSSE4.2" 
OMP_NUM_THREADS=1 
blas_linking="$MKL_LIBS" 
dims_small="1 4 5 6 9 13 16 17 22" 
dims_tiny="1 2 3 4 5 6 7 8 9 10 11 12" 
host_compile="gfortran " 
tasks=32 
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Appendix B 

Arch file used for building serial version (sopt) using GNU Compiler suite and MKL libraries on CURIE: 

 

# On CURIE use the following commands prior to make: 
# 
# $ module load fftw3 
# $ module load gnu 
# 
CC       = cc 
CPP      =  
FC       = gfortran 
LD       = gfortran 
AR       = ar -r 
CPPFLAGS = -I$(FFTW3_INC_DIR) 
DFLAGS   = -D__GFORTRAN -D__FFTSG -D__FFTW3 -D__HAS_smm_dnn -D__LIBINT 
FCFLAGS  = $(CPPFLAGS) $(DFLAGS) -O2 -ffast-math -funroll-loops -ftree-vectorize -
march=native -ffree-form 
LDFLAGS  = $(FCFLAGS) 
LIBS     = $(MKL_LIBS) \ 
           $(FFTW3_LIB_DIR)/libfftw3.a \ 
           $(WORKDIR)/libssm/gfortran-mkl/lib/libsmm_dnn.a \ 
           $(WORKDIR)/libint/gnu/lib/libderiv.a \ 
           $(WORKDIR)/libint/gnu/lib/libint.a \ 
           -lstdc++ 
 
OBJECTS_ARCHITECTURE = machine_gfortran.o
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Arch file used for building MPI only version (popt) using GNU Compiler suite and MKL libraries on 

CURIE: 

 

 

# On CURIE use the following commands prior to make: 
# 
# $ module load fftw3 
# $ module load gcc 
# $ export OMPI_MPIFC=gfortran 
# 
CC       = cc 
CPP      =  
FC       = mpif90 
LD       = mpif90 
AR       = ar -r 
CPPFLAGS = -I$(FFTW3_INC_DIR) 
DFLAGS   = -D__GFORTRAN -D__FFTSG -D__parallel -D__BLACS -D__SCALAPACK -D__FFTW3 -
D__HAS_smm_dnn -D__LIBINT 
FCFLAGS  = $(CPPFLAGS) $(DFLAGS) -O2 -ffast-math -funroll-loops -ftree-vectorize -
march=native -ffree-form 
LDFLAGS  = $(FCFLAGS) 
LIBS     = $(MKL_SCA_LIBS) \ 
           $(FFTW3_LIB_DIR)/libfftw3.a \ 
           $(WORKDIR)/libssm/gfortran-mkl/lib/libsmm_dnn.a \ 
           $(WORKDIR)/libint/gnu/lib/libderiv.a \ 
           $(WORKDIR)/libint/gnu/lib/libint.a \ 
           -lstdc++ 
 
OBJECTS ARCHITECTURE = machine gfortran.o
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Arch file used for building MPI+OpenMP version (psmp) using GNU Compiler suite and MKL libraries on 
CURIE: 

 

 

 

# On CURIE use the following commands prior to make: 
# 
# $ module load fftw3 
# $ module load gcc 
# $ export OMPI_MPIFC=gfortran 
# 
CC       = cc 
CPP      =  
FC       = mpif90 -fopenmp 
LD       = mpif90 -fopenmp 
AR       = ar -r 
CPPFLAGS = -I$(FFTW3_INC_DIR) 
DFLAGS   = -D__GFORTRAN -D__FFTSG -D__parallel -D__BLACS -D__SCALAPACK -D__FFTW3 -
D__LIBINT 
FCFLAGS  = $(CPPFLAGS) $(DFLAGS) -O3 -ffast-math -funroll-loops -ftree-vectorize -
march=native -ffree-form 
LDFLAGS  = $(FCFLAGS) 
LIBS     = $(MKL_SCA_LIBS) \ 
           $(FFTW3_LIB_DIR)/libfftw3.a \ 
           $(WORKDIR)/libssm/gfortran-mkl/lib/libsmm_dnn.a \ 
           $(WORKDIR)/libint/gnu/lib/libderiv.a \ 
           $(WORKDIR)/libint/gnu/lib/libint.a \ 
           -lstdc++ 
 
OBJECTS ARCHITECTURE = machine gfortran.o
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Arch file used for building serial version (sopt) using Intel Compiler suite and MKL libraries on CURIE: 
 

 

 

# On CURIE use the following commands prior to make: 
# 
# $ module load fftw3 
# 
CC       = cc 
CPP      = cpp 
FC       = ifort 
LD       = ifort 
AR       = ar -r 
DFLAGS   = -D__INTEL -D__FFTSG -D__FFTW3 -D__HAS_smm_dnn -D__LIBINT 
CPPFLAGS = -C -traditional $(DFLAGS) -I$(FFTW3_INC_DIR) 
FCFLAGS  = $(DFLAGS) -O2 -xSSE4.2 -heap-arrays 64 -funroll-loops -fpp -free 
FCFLAGS2 = $(DFLAGS) -O1 -xSSE4.2 -heap-arrays 64 -fpp -free 
LDFLAGS  = $(FCFLAGS) 
LIBS     = $(MKL_LIBS) \ 
           -L$(FFTW3_LIB_DIR) -lfftw3 \ 
           -L$(WORKDIR)/libssm/intel/lib -lsmm_dnn \ 
           -L$(WORKDIR)/libint/intel/lib -lderiv -lint -lstdc++ 
 
OBJECTS_ARCHITECTURE = machine_intel.o 
 
graphcon.o: graphcon.F 
 $(FC) -c $(FCFLAGS2) $< 
 
qs_vxc_atom.o: qs_vxc_atom.F 
 $(FC) -c $(FCFLAGS2) $< 
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Arch file used for building the MPI only version (popt) using Intel Compiler suite and MKL libraries on 
CURIE: 

 

 

 

# On CURIE use the following commands prior to make: 
# 
# $ module load fftw3 
# 
CC       = cc 
CPP      = cpp 
FC       = mpif90 
LD       = mpif90 
AR       = ar -r 
DFLAGS   = -D__INTEL -D__FFTSG -D__parallel -D__BLACS -D__SCALAPACK -D__FFTW3 -
D__HAS_smm_dnn -D__LIBINT 
CPPFLAGS = -C -traditional $(DFLAGS) -I$(FFTW3_INC_DIR) 
FCFLAGS  = $(DFLAGS) -O2 -xSSE4.2 -heap-arrays 64 -funroll-loops -fpp -free 
FCFLAGS2 = $(DFLAGS) -O1 -xSSE4.2 -heap-arrays 64 -fpp -free 
LDFLAGS  = $(FCFLAGS) 
LIBS     = $(MKL_SCA_LIBS) \ 
           -L$(FFTW3_LIB_DIR) -lfftw3 \ 
           -L$(WORKDIR)/libssm/intel/lib -lsmm_dnn \ 
           -L$(WORKDIR)/libint/intel/lib -lderiv -lint -lstdc++ 
 
OBJECTS_ARCHITECTURE = machine_intel.o 
 
graphcon.o: graphcon.F 
 $(FC) -c $(FCFLAGS2) $< 
 
qs_vxc_atom.o: qs_vxc_atom.F 
 $(FC) -c $(FCFLAGS2) $< 
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Appendix C 
This appendix shows the modules loaded during measurements of the performance of build_core_ppl. 
 

Currently Loaded Modulefiles: 

  1) modules/3.2.6.6                                                            15) xt-mpich2/5.4.3 

  2) nodestat/2.2-1.0400.29866.4.3.gem                                          16) atp/1.4.2 

  3) sdb/1.0-1.0400.30000.6.18.gem                                              17) xt-asyncpe/5.07 

  4) MySQL/5.0.64-1.0000.4667.20.1                                              18) pmi/3.0.0-1.0000.8661.28.2807.gem 

  5) lustre-cray_gem_s/1.8.4_2.6.32.45_0.3.2_1.0400.6221.1.1-1.0400.30252.1.29  19) xt-libsci/11.0.05 

  6) udreg/2.3.1-1.0400.3911.5.6.gem                                            20) gcc/4.6.2 

  7) ugni/2.3-1.0400.3912.4.29.gem                                              21) pbs/11.2.0.113417 

  8) gni-headers/2.1-1.0400.3906.5.1.gem                                        22) packages-phase2b 

  9) dmapp/3.2.1-1.0400.3965.10.12.gem                                          23) budgets/1.0 

 10) xpmem/0.1-2.0400.29883.4.6.gem                                             24) xtpe-interlagos 

 11) hss-llm/6.0.0                                                              25) fftw/3.3.0.0 

 12) Base-opts/1.0.2-1.0400.29823.8.1.gem                                       26) papi/4.2.0 

 13) xtpe-network-gemini                                                        27) perftools/5.3.0 

    14) PrgEnv-gnu/4.0.30 

 


