
This project is funded from the European Union’s Horizon 2020 Research and Innovation programme 

under Grant Agreement no. 671602.

Programming Model 
INTERoperability ToWards Exascale

http://www.intertwine-project.eu



INTERTWinE

• Co-design methodology

• Define interoperability requirements, implement 
and evaluate, drive new requirements

• Work with real applications

• Computational Resource Management

• Coordinated resource sharing for interoperability 
between runtime systems, libraries

• Distributed Data Management

• Scalable, transparent data sharing on 
heterogeneous, distributed memory hierarchies 

• Engagement with HPC community

• Standards bodies: OpenMP, MPI, GASPI

• Courses, workshops and Best Practice Guides 

http://www.intertwine-project.eu

Interoperability between programming models
for scalable performance on extreme-scale supercomputers

Follow INTERTWinE on Twitter: @intertwine_eu

Linear Algebra

Big Data analytics

CFD

Complex Fluids

Space Plasma



Interoperable node-level resource sharing

Computational Resource Sharing

• Multiple codes compete for CPU cores, accelerator devices on cluster nodes

• Application threads

• Numerical libraries threads

• Runtime systems threads

• Communication library threads

• Interference leads to resource over-subscription or under-subscription on cluster nodes

• Interoperability?

• Need coordinated resource sharing:

• Ability to express general resource needs

• Ability to express dynamic resource requirements:

• computational-heavy periods, idleness periods

 INTERTWinE Resource Management APIs



Sequential	
Application PLASMA MKL

dgemm()

0 1 2 3 4 5

CPU	USAGE

dpotrf()

Interoperable node-level resource sharing

Classical fork-join scheme

Sequential 
application

PLASMA
linear algebra

on OpenMP

Intel MKL



INTERTWinE — Resource Manager APIs
Dynamic Resource Sharing

Application
PLASMA

(OpenMP)
MKL
(TBB)

dgemm()

0 1 2 3 4 5

CPU	USAGEDRS

borrow()

lend	() lend	()

reclaim()

borrow()

enable()

disable
dpotrf()

lend()
enable()

lend()

Enable runtime systems to dynamically negotiate and adjust resource usage



Interoperable node-level resource sharing

Task-based	
Application PLASMA MKL

dgemm()

0 1 2 3 4 5

CPU	USAGE

doptrf()()

Maximize resource usage:
 task-based application + task-based libraries on multiple runtime systems

task-based 
application
on OmpSs

PLASMA
task-based-

linear algebra
on OpenMP

Chameleon
task-based 

linear algebra
on StarPU



Directory/cache: For distributed shared memory

Node 0

Node 1

Node 2

Node 0

Node 1

Node 2

0x000000

0xFF0000

Array A

Array B

Programmer’s 

view of 

memory

Array A

Array B

Node 0

Array B

Array A

Node 1

Array B

Array A

Node 2

Physical 

view of 

memory



Directory/cache integration and transport layers

• It is intended to be integrated into the runtimes of task based 
models (but can be used directly)

• Such as OmpSs, StarPU and PaRSEC

• So its use (and existence!) is transparent to the programmer

• Transport layers are provided that implement the underlying 
data movement

• GASPI, MPI RMA, BeeGFS

• Trivial to switch in and out



Early performance measures

• Block Cholesky matrix factorisation

• 16384 * 16384 elements, block size of 16 * 16

• BLAS for computation, concentrating here on the 
cost of data movement 

• On ARCHER, Cray XC30 



INTERTWinE:
Programming Model INTERoperability ToWards Exascale

Visit http://www.intertwine-project.eu to find out about our:

• Courses and workshops:

• Advanced OpenMP: 12-14 December (London, UK)

• Best Practice Guides:

• Writing GASPI-MPI Interoperable Programs 

• MPI + OpenMP Programming

• MPI + OmpSs Interoperable Programs

• Open MP/OmpSs/StarPU + Multi-threaded Libraries 
Interoperable Programs

• “Developer Hub” of resources for developers & application users

…and to sign up for the latest news from INTERTWinE at
http://www.intertwine-project.eu/newsletter

http://www.intertwine-project.eu


