Extending the Time and Length Scale of \textit{Ab-initio}
Molecular Dynamics Simulations

M. Krack1 \quad S. Caravati2 \quad T. D. Kühne2 \quad M. Parrinello2 \quad M. Bernasconi3

1Paul Scherrer Institut
2ETH Zurich
3University of Milano-Bicocca

DEISA PRACE Symposium 2009
May 11-13, Amsterdam
Motivation

Goal:
- \textit{Ab-initio} simulations for extended time and length scales
- Elucidate structure and dynamical behaviour of complex materials

Prerequisites:
- Efficient energy and force evaluation for an atomic configuration
- Accelerated molecular dynamics scheme for time propagation
Motivation

Goal:

- *Ab-initio* simulations for extended time and length scales
- Elucidate structure and dynamical behaviour of complex materials

Prerequisites:

- Efficient energy and force evaluation for an atomic configuration
- Accelerated molecular dynamics scheme for time propagation
Motivation

Goal:
- *Ab-initio* simulations for extended time and length scales
- Elucidate structure and dynamical behaviour of complex materials

Prerequisites:
- Efficient energy and force evaluation for an atomic configuration
- Accelerated molecular dynamics scheme for time propagation
What is \textit{ab-initio}?

- First-principle or \textit{ab-initio} methods:
 - Directly derived from established laws of physics
 \[\Rightarrow\] from \textit{first principles} of physics
 - No ad-hoc assumptions
 - No fitting of model parameters to experimental data

- Example: (related to the discussed case)
 - Electronic structure methods based on the Schrödinger equation that do not include any fitting to experimental data
What is *ab-initio*?

- First-principle or *ab-initio* methods:
 - Directly derived from established laws of physics
 - from *first principles* of physics
 - No ad-hoc assumptions
 - No fitting of model parameters to experimental data

- Example: (related to the discussed case)
 - Electronic structure methods based on the Schrödinger equation that do not include any fitting to experimental data
Ab-initio, why bother?

Just an indicative comparison

<table>
<thead>
<tr>
<th>Electronic structure</th>
<th>Empirical potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion of nuclei and electrons</td>
<td>Motion of atoms</td>
</tr>
<tr>
<td>No a priori knowledge of the interatomic interactions</td>
<td>Pre-defined fitted interaction potentials</td>
</tr>
<tr>
<td>Dynamic bonding processes</td>
<td>Bonding pre-defined (topology)</td>
</tr>
<tr>
<td>Predictive</td>
<td>Only limited predictive</td>
</tr>
<tr>
<td>Computationally very costly</td>
<td>Computationally rather cheap</td>
</tr>
</tbody>
</table>
Ab-initio methods

- Hartree-Fock based methods (e.g. MP2, CCSD)
 → accurate, but often expensive

- Kohn-Sham density functional theory (KS-DFT)
 → efficient and most of the times sufficiently accurate
The open source project CP2K

- Program package to perform molecular dynamics simulations

- Methods implemented in CP2K (Fortran 90/95):
 - *Ab-initio* density functional methods (QUICKSTEP)
 - Semiempirical methods (AM1, MNDO, PM3, PM6)
 - Density functional tight-binding methods (DFTB)
 - Empirical potential methods (FIST)

- More informations:

 http://cp2k.berlios.de
CP2K/QUICKSTEP

- Based on Kohn-Sham density functional theory (KS-DFT)
- Hybrid basis set (Gaussian Plane Waves method):
 - Linear combination of Gaussian-type orbitals (LC-GTO) for the Kohn-Sham orbitals
 - Auxiliary plane waves basis set for the electronic charge density
- *Ab-initio* DFT calculations for atomic, molecular, liquid or crystalline systems are feasible
- Kohn-Sham matrix construction scales linearly
 → fast energy and force calculation
Ab-initio molecular dynamics (AIMD)

Basic types

- Born-Oppenheimer molecular dynamics (BOMD):
 - Optimize electronic structure in each time step tightly

- Car-Parrinello molecular dynamics (CPMD):
 - *Fictitious* dynamics for the wavefunctions (orbitals)
 - Nuclear and electronic degrees of freedom are propagated together
Ab-initio molecular dynamics

Pros and Cons: BOMD versus CPMD

<table>
<thead>
<tr>
<th></th>
<th>BOMD</th>
<th>CPMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy conservation:</td>
<td>decent</td>
<td>excellent</td>
</tr>
<tr>
<td>Iterative wavefunction optimization:</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Integration time step:</td>
<td>large</td>
<td>small</td>
</tr>
<tr>
<td>On the BO surface:</td>
<td>yes</td>
<td>slightly above</td>
</tr>
<tr>
<td>Small band gap systems</td>
<td>feasible</td>
<td>very difficult</td>
</tr>
</tbody>
</table>

- **Goal:** Combine the best of both methods
 - Stable: CPMD-like propagation scheme
 - Accurate: adaptively approaching BOMD
 - Efficient: large (BOMD-like) integration time steps, but no SCF
 - Robust: small band gap systems can be handled
Ab-initio molecular dynamics
Pros and Cons: BOMD versus CPMD

<table>
<thead>
<tr>
<th></th>
<th>BOMD</th>
<th>CPMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy conservation:</td>
<td>decent</td>
<td>excellent</td>
</tr>
<tr>
<td>Iterative wavefunction optimization:</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Integration time step:</td>
<td>large</td>
<td>small</td>
</tr>
<tr>
<td>On the BO surface:</td>
<td>yes</td>
<td>slightly above</td>
</tr>
<tr>
<td>Small band gap systems</td>
<td>feasible</td>
<td>very difficult</td>
</tr>
</tbody>
</table>

Goal: Combine the best of both methods
- Stable: CPMD-like propagation scheme
- Accurate: adaptively approaching BOMD
- Efficient: large (BOMD-like) integration time steps, but no SCF
- Robust: small band gap systems can be handled
New method for accelerated ab-initio MD

- Stable predictor-corrector method for the propagation of the electronic degrees of freedom
- Efficient preconditioned minimizer method (corrector step)
- Langevin-type dynamics to propagate the nuclear degrees of freedom
Validation of the method
Is the kinetic energy distribution Maxwell distributed?

Test system: Molten silicon
Simulation cell: 64 Si atoms
Temperature: $T = 3000$ K
Simulation time: $t > 1$ ns
Simulation method: DFT MD
Code: CP2K/QUICKSTEP

A correct canonical sampling of the Boltzmann distribution is performed.
Validation of the method
Is the kinetic energy distribution Maxwell distributed?

A correct canonical sampling of the Boltzmann distribution is performed.

- Test system: Molten silicon
- Simulation cell: 64 Si atoms
- Temperature: $T = 3000$ K
- Simulation time: $t > 1$ ns
- Simulation method: DFT MD
- Code: CP2K/QUICKSTEP
Validation of the method
Deviation from the Born-Oppenheimer surface

- Test system: Molten silica
- Simulation cell: 24 SiO₂ units
- Temperature: T = 3500 K
- Bonds are swiftly broken and formed
- Worst case scenario as the electronic density is rapidly varying
Validation of the method
Deviation from the Born-Oppenheimer surface

![Graph showing energy deviation over time](image-url)
Validation of the method
Deviation from the Born-Oppenheimer surface

-865.4
-865.2
-865
-864.8
Energy [Hartree]

BOMD reference
1 corrector step

0 200 400 600 800 1000
Time [fs]

Instantaneous mean force deviation
Average mean force deviation

Mean force deviation [a.u.]
Validation of the method
Deviation from the Born-Oppenheimer surface

![Graph showing energy and mean force deviation over time](image_url)
Validation of the method
Deviation from the Born-Oppenheimer surface

![Graph showing energy and mean force deviation over time](image)
Validation of the method
Deviation from the Born-Oppenheimer surface

- Small and almost constant energy shift
- Energy differences are very well reproduced
- No tight wavefunction optimization
- Deviation from the BO surface is systematically controllable
Validation of the method
Structural properties

For these systems a speed-up of two orders of magnitude is observed
Validation of the method
Structural properties

For these systems a speed-up of two orders of magnitude is observed
Modeling of phase change materials (PCMs)

- Phase change material (PCM) for non-volatile memory (NVM):
 - Ge$_2$Sb$_2$Te$_5$ (GST), e.g. for DVD-RAM
 - Fast and reversible crystal-amorphous transition

- Not much is known:
 - about the amorphous phase structure
 - about the transition mechanism
 - why does GST work so well?

- AIMD is effective, as no force fields are available (ternary system)
Modeling of phase change materials (PCMs)

- Phase change material (PCM) for non-volatile memory (NVM):
 - Ge$_2$Sb$_2$Te$_5$ (GST), e.g. for DVD-RAM
 - Fast and reversible crystal-amorphous transition

- Not much is known:
 - about the amorphous phase structure
 - about the transition mechanism
 - why does GST work so well?

- AIMD is effective, as no force fields are available (ternary system)
Crystalline phase of Ge$_2$Sb$_2$Te$_5$ (GST)

- Rocksalt (NaCl-type) structure
- Fully occupied Te sublattice
- Local distortion: mainly for Ge and Sb

Amorphous phase of Ge$_2$Sb$_2$Te$_5$ (GST)
Ge$_2$Sb$_2$Te$_5$: Simulation vs. Experiment

Structure factors $S(Q)$ and pair correlation functions $T(r)$
Dynamical properties

- Diffusion coefficient D of the liquid:
 - $D = 4.88 \cdot 10^{-5}$ cm2/s (accelerated AIMD, this work)
 - $D = 4.55 \cdot 10^{-5}$ cm2/s (conventional BOMD, this work)
 - $D = 4.67 \cdot 10^{-5}$ cm2/s (CPMD, J. Akola and R. O. Jones)
Pressure-induced amorphization of GST

![Graph showing pressure-induced amorphization of GST]

(normalized intensity vs. Pressure (GPa))

Te — Te — Te
Ge — Te — Sb
Te — Ge — Te
Te — Ge — Te
Te — Te — Sb
Pressure-induced amorphization of GST

12 GPa

14 GPa
Summary

- Development and validation of a new accelerated AIMD method
- First successful application to a real-world problem (PCMs)
- Amorphous GST samples could be simulated and structural and dynamical properties could be analyzed
- Simulation of pressure-induced amorphization yields transition pressure close to experiment
- Possible mechanism of amorphization elucidated
- Results may guide future materials design
- Computers help to understand their own components
Acknowledgment

- DEISA (RZ Garching and FZ Jülich)
- Swiss National Supercomputing Centre (CSCS)
- ETH Zurich (IT Services: Scientific Computing)
Acknowledgment

- DEISA (RZ Garching and FZ Jülich)
- Swiss National Supercomputing Centre (CSCS)
- ETH Zurich (IT Services: Scientific Computing)

Thank you for attention!