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Abstract

The results of two kinds of parallel IO performance measurements on the CURIE supercomputer are presented in this
report. In a first series of tests, we use the open source IOR benchmark to make a comparative study of the parallel
reading and writing performances on the CURIE Lustre filesystem using different IO paradigms (POSIX, MPI-IO,
HDF5 and Parallel-netCDF). The impact of the parallel mode (collective or independent) and of the MPI-IO hints on
the performance is also studied. In a second series of tests, we use a well known scientific code in the HPC astrophysics
community: RAMSES, which a grid-based hydrodynamics solver with adaptive mesh refinement (AMR). IDRIS added
support for the 3 following parallel IO approaches: MPI-IO, HDF5 and Parallel-netCDF. They are compared to the
traditional one file per MPI process approach. Results from the two series of tests (synthetic with IOR and more realistic
with RAMSES) are compared. This study could serve as a good starting point for helping other application developers
in improving parallel IO performance.
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1. Introduction

Data accesses in large scale supercomputers tend to be a huge challenge for both scientists and engineers.
Understanding and tuning parallel I/O are necessary to leverage aggregate communication and I/O bandwidth of
client machines. Finding usable, efficient and portable programming interfaces and portable file formats are also
of crucial importance. Ideally, the use of high-level I/O libraries (HDF5, PnetCDF...) or I/O middleware (MPI-
IO) should reduce the need for optimizations in application codes. However, to obtain good I/O performance,
it is absolutely essential to investigate how to set MPI-IO hints in an application code to make an appropriate
use of the underlying I/O software stack (MPI-IO, parallel file system) on top of the actual hardware. More
precisely, MPI-IO hints are parameters that help tuning the MPI-IO middleware for facilitating, by example,
concurrent access by a group of processes (collective I/O, atomicity rules...) and efficiently mapping high-level
operations into a dedicated parallel file system flavour (GPFS, Lustre...).

The PRACE CURIE supercomputer is the French Tier-0 system based on x86 architecture CPUs with a
total 92,160 processing cores with 4 GB memory per core. At the time the present study was made, only 360 fat
nodes (equipped with four 8-cores Intel Nehalem processor per node) were available; this amounts to 11,520 CPU
cores. The site-wide global storage subsystem uses the LUSTRE parallel filesystem and provides an aggregate
5.4 PBytes storage with a peak I/O bandwidth of 150 GB/s. This LUSTRE file system is made of several
sub-domains or logical volumes(e.g. SCRATCH, WORK and STORE) with different LUSTRE characteristics,
goals and performance. For example, on the CURIE machine, the SCRATCH space is made of 120 OSTs
(Object Based Devices), each of which contains a 6.9 TBytes space.

2. IOR benchmark

The IOR (Interleaved or Random) micro-benchmark 1 provides a flexible tool to perform reading/writing
throughputs measurements by varying different parameters like access pattern (single file per MPI process or
collective IO), transaction size, file size, concurrency rate and programming interface (POSIX, MPI-IO, HDF5 or
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1IOR was developped by Lawrence Livermore National Laboratory; source code available at http://sourceforge.net/projects/ior-
sio/
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Table 1. List of MPI-IO hints values used in the collective mode IOR study.

Configuration MPI-IO Hints values
number romio cb write romio ds write romio cb read romio ds read

1 enable enable enable enable
2 enable disable enable disable
3 enable auto enable auto
4 disable enable disable enable
5 disable disable disable disable
6 disable auto disable auto
7 auto enable auto enable
8 auto disable auto disable
9 auto auto auto auto

ParallelNetCDF). As most other available IO benchmarks, IOR is good at tuning a specific operation, validating
a newly installed system but might be not as useful when focusing on modeling or predicting application
performance (using a real case application is the purpose of the second part of this study). IOR benchmarks
consists in reading or writing files organized as following [2]. In the particular case of collective IO, IOR handles
a single file with a specific layout consisting in a sequence of segments, which could correspond for example to a
set of data variables (e.g. velocity, pressure, energy) associated to a simulation time step. Each processor (i.e.
MPI process) handles a segment called blockSize which is actually read or written from disk by chunks of size
transferSize which directly correspond to the I/O transaction size. In the one-file-per-process mode, each MPI
processor performs I/O operations on its own file.

Building IOR is straighforward on the CURIE machine, but just requires to install high-level parallel IO
libraries: HDF5 (version 1.8.7) and ParallelNetCDF (version 1.1.1). As an exhaustive study was impracticable
because there are too many parameters that can be tuned and also by lack of time, we limited ourself to the
following setup: we used a fixed transfer size of 2MiB, and a block size of 1024 MiB per process. A typical IOR
input file would be:

IOR START
api=HDF5
testFile=fichier
repetitions=1
readFile=1
writeFile=1
filePerProc=0
keepFile=0
blockSize=1024M
transferSize=2M
verbose=0
numTasks=0
collective=1

IOR STOP

where the important parameters to our study will be the API (POSIX, MPI-IO, HDF5 or ParallelNetCDF) and
collective (to activate operation mode where all processes coordinates to read/write from/to the same file).
Finally, let us mention that IOR implements a simple mecanism which allows the user to set MPI-IO hints at
runtime by parsing environment variables whose name must have the following prefix IOR HINT MPI and as
suffix the name of a valid MPI-IO hint. For example we will use IOR HINT MPI romio cb write=enable to
activate MPI-IO hint romio cb write (collective buffer in writing mode).

Table 1 specifies the different configurations used in the collective mode IOR study by varying the values
of four different MPI-IO hints controlling data sieving and collective buffering. Data sieving is an optimization
technique used for efficiently accessing noncontiguous regions of data in files when noncontiguous accesses are
not provided as a file system primitive [3]. Collective buffering is another optimization technique which consists
in using a two-stage approach; for example, in the case of a reading operation, data buffers are first split up
amongst a set of aggregator processes that will then actually perform I/O operations through filesystem calls.

In table 2 are shown some reading and writing throughputs mesured in MiB/s for all the MPI-IO hints
specified in table 1. Please note that these measurements where repeated only five times; we noticed variations
in measurements of the order of 10 to 20% and once a drop of performance maybe due to a high load on the
machine (all the tests were performed in normal production). From the table 2, one can make the following
comments:

• Changing the MPI-IO hint configuration has a large impact on throughput: a factor of 24 can be seen
by comparing HDF5 reading throughput of configuration 4 to configuration 1 and a factor of 7 in HDF5
writing throughput;
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Table 2. IOR Reading/Writing throughputs in MiB/s measured with different MPI-IO configurations listed in table 1
using 256 MPI processes/cores, each reading/writing a block of 1GiB with a transfert size of 2MiB. In configuration 0,
IOR is used in a non-collective mode while all other configurations correspond to a collective mode.

Config number POSIX HDF5 MPI-IO PnetCDF
R W R W R W R W

0 235396 10057 5299 938 59887 1102 57593 959
(non-collective)

1 - - 252 192 664 363 851 265
2 - - 257 191 569 363 849 264
3 - - 340 182 230 363 627 285
4 - - 6083 931 3867 984 9412 867
5 - - 3779 1148 4151 1005 6150 1328
6 - - 5251 891 4671 999 12722 847
7 - - 269 176 170 361 354 269
8 - - 357 177 407 348 467 267
9 - - 369 172 404 337 475 273

Table 3. IOR Reading/Writing throughputs in MiB/s measured with two MPI-IO configurations listed in table 1 using
1024 MPI processes/cores, each reading/writing a block of 256MiB with a transfer size of 2MiB. In configuration 0, IOR
is used in a non-collective mode while the other configuration correspond to a collective mode.

Config number POSIX HDF5 MPI-IO PnetCDF
R W R W R W R W

0 610370 16310 51789 3660 43984 3841 49114 2732
(non-collective)

6 - - 37717 1610 17768 3890 14939 1466

• Regarding reading/writing performances, configurations 4, 5 and 6 provide the best throughputs. This
means that in this particular case of quite large files (256GiB, each process accessing 1GiB), disabling
collective buffering for both reading and writing is a good option. This is clearly not true when each
process handles smaller block sizes;

• Regarding API impact on performance, one can notice the overall performance of PnetCDF is better than
HDF5 by roughly a factor of 1.5;

• The best writing performance is obtained using PnetCDF API in configuration 5; that is by disabling both
data sieving and collective buffering.

Table 3 shows some mesurements using 1024 processes for the same total file size of 256GiB in the shared
file mode. Please notice that, we were not able to run all configurations when using 1024 processes by lack
of time and also because we observed that those jobs have a tendency to terminate prematurely. We notice
that we have a much higher writing throughput by using 1024 processes for the same total file size (256 GiB)
in shared file mode. We can also observe a much narrower gap in reading throughput between collective and
non-collective IO. This is a non-exhaustive study, that should be repeated and enlarged to other MPI-IO hints
configurations, and towards larger numbers of processes.

3. RAMSES benchmark

In this section, we ran I/O performance tests on a real application. Our choice was to use the astrophysics code
RAMSES. It is well known in this community and has proven to be scalable to tens of thousands of processes.
Moreover, different parallel I/O approaches (MPI-IO, HDF5 and Parallel-netCDF) have been implemented by
IDRIS in the previous years allowing to compare them on the CURIE supercomputer.

3.1. Presentation of RAMSES

RAMSES[4] is an astrophysics application originally developed by Romain Teyssier (CEA) under the CeCILL
software license. Its usage is free for non-commercial use only.

It is available at http://web.me.com/romain.teyssier/Site/RAMSES.html.
RAMSES contains various algorithms designed for:
• Cartesian AMR (Adaptive mesh refinement) grids in 1D, 2D or 3D with load balancing and dynamic

memory defragmentation;
• Solving the Poisson equation with a Multi-grid and a Conjugate Gradient solver;
• Using various Riemann solvers (Lax-Friedrich, HLLC, exact) for adiabatic gas dynamics;
• Computing collision-less particles (dark matter and stars) dynamics using a PM code;
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Table 4. Size in GiB of the output files (for HDF5 on 1024 cores)

File 10243 20483

AMR 25.860 191.813
hydro 52.848 393.246

Table 5. MPI-IO hints tested with RAMSES

Hint Possible values (default in bold)

direct read false, true
direct write false, true
romio cb read automatic, enable, disable
romio cb write automatic, enable, disable
romio ds read automatic, enable, disable
romio ds write automatic, enable, disable
romio lustre ds in coll enable, disable

• Computing the cooling and heating of a metal-rich plasma due to atomic physics processes and an homo-
geneous UV background (Haardt and Madau model);

• Implementing a model of star-formation based on a standard Schmidt law with the traditional set of
parameters;

• Implementing a model of supernovae-driven winds based on a local Sedov blast wave solution.
The version used in this paper has been modified by IDRIS. The three following parallel IO approaches

have been implemented: MPI-IO, HDF5 and Parallel-netCDF. They complement the traditional ”one file per
process” approach, that we will call the POSIX approach.

3.2. Testcases and run conditions

The RAMSES testcase we used in all the tests is Sedov3D (explosion in a cubic box). Several domain sizes have
been chosen (10243 or 20483). There is no AMR during execution (fixed mesh size) and the load is perfectly
balanced between the MPI processes. Each run generate two series of files:

• AMR files (one per process for the POSIX approach, one shared for all processes for the MPI-IO, HDF5
or Parallel-netCDF approaches);

• hydro files (one per process for the POSIX approach, one shared for all processes for the MPI-IO, HDF5
or Parallel-netCDF approaches).

Their main differences are:
• the AMR files are more complex and contains more variables;
• the first 2 sections (containing respectively parameters identical on all processes and small datasets) are

much bigger in the AMR files (but still relatively small in absolute size);
• the hydro files are about 2 times larger (320 bytes per cell instead of 156 for the third and main section);
• the granularity of the entries is significantly larger in the hydro files and therefore better I/O performances

are expected for them.
Typical file sizes are given in the Table 4. Small variations exist depending on the fileformat (POSIX

separated files, MPI-IO, HDF5 or Parallel-netCDF) and on the number of processes (some data structures have
size proportional to the number of MPI processes).

All runs have been done on CURIE in normal production. In addition, due to lack of time and comput-
ing resources, most measurements have been done only one time. Therefore, perturbations in the measured
performances are likely.

3.3. Effect of the MPI-IO hints

MPI-IO hints can have a dramatic effect on the I/O performances (see [5] by example). Default system values
are not always the most adapted ones to the application and can give very poor results. It is therefore strongly
recommanded to test several of them on realistic testcases (in terms of problem size and number of processes).

The MPI-IO hints tested with RAMSES on the Lustre filesystem of CURIE are given in the Table 5. 7 hints
of the 23 available on the system have been benchmarked.

We chose the Sedov3D testcase with a 10243 mesh. All runs were done on 256 cores.
The obtained results are shown in the Table 6 for the writing tests and in the Table 7 for the reading tests.

It can be seen that the most adequate MPI-IO hints for this testcase and with this number of processes are the
default ones for writing and romio cb read = disable for reading. These values are used in the scalability tests
of the following sections. Different combinations of romio cb read = disable with other hints have been tested
but have not given improved performances.
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Table 6. Throughput in writing with different MPI-IO hints (in MiB/s, Sedov3D 10243 on 256 cores)

Hint Value POSIX HDF5 MPI-IO PnetCDF
AMR hydro AMR hydro AMR hydro AMR hydro

default - 1154 2627 187 402 273 1113 230 943
romio cb write enable - - 183 390 269 1090 245 955
romio cb write disable - - 37 373 181 701 59 479
romio ds write enable - - 185 391 259 828 235 770
romio ds write disable - - 183 391 193 421 182 391
romio lustre ds in coll disable - - 181 393 193 420 181 399
direct write true - - 147 238 157 286 137 255

Table 7. Throughput in reading with different MPI-IO hints (in MiB/s, Sedov3D 10243 on 256 cores)

Hint Value POSIX HDF5 MPI-IO PnetCDF
AMR hydro AMR hydro AMR hydro AMR hydro

default - 6511 7507 378 977 412 946 385 793
romio cb read enable - - 367 942 451 991 436 815
romio cb read disable - - 1718 1611 2142 1572 1922 1670
romio ds read enable - - 437 969 432 1002 342 815
romio ds read disable - - 414 986 430 1017 424 820
romio lustre ds in coll disable - - 434 996 454 986 451 805
direct read true - - 152 203 164 209 255 361

3.4. Scalability tests

Once the MPI-IO hints were chosen, scalability benchmarks have been realized with 2 different problem sizes:
10243 and 20483. They were run from the minimum possible number of processes (due to memory limitations)
to a relatively high number of cores (2048 for the 10243 testcase and 4096 for the 20483 testcase). The Parallel-
netCDF approach was not used with the biggest testcase due to known problems with the use of it in RAMSES
and with these filesizes.

The figures Fig. 1 and Fig. 2 show the throughputs obtained with the different parallel I/O approaches and
with different numbers of processes.

The POSIX separate files approach is nearly always the fastest. Even with a very big testcase, the peak
throughput of the file system can not be approached (less than 20GiB/s in the best case compared to a theoretical
maximum throughput of 150GiB/s). Throughput increazes with the number of process up to around 1024
processes, stabilizes up to 2048 and seems to decreaze with more processes.

For the three other approaches (MPI-IO, HDF5 and Parallel-netCDF), MPI-I/O is usually the most efficient.
Its throughput increazes with the number of processes, except when writing the AMR file. With a high number
of cores, its performance become comparable to the POSIX approach.

Parallel-netCDF is close to (and slighly slower than) MPI-I/O up to 512 processes. This seems logical
because the overlay on MPI-I/O is not very important. However, when the number of processes becomes

Fig. 1. Writing throughput of Sedov3D on CURIE for different I/O approaches; (a) 10243 meshsize; (b) 20483 meshsize
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Fig. 2. Reading throughput of Sedov3D on CURIE for different I/O approaches; (a) 10243 meshsize; (b) 20483 meshsize

Fig. 3. Throughput of Sedov3D 10243 on CURIE for different striping parameters; (a) striping factor; (b) striping unit

important, the gap increazes dramatically.
The HDF5 approach is the slowest. This is probably due to the fact that the HDF5 interface is more

complex. The throughput for the hydro file is problematic and decreazes when there are more and more cores.
It can also be noted than, for a fixed-size problem, the differences between the different paradigms tend to

increase with the number of processes.

3.5. Additional tests: effects of the striping

How the files are positioned on the disks can have a big influence on the performance. On the Lustre filesystem,
this can be controlled in two different ways: by setting the number of OSTs (Object Storage Targets, which can
be seen as different ”disks”) on which a file is spanned and by defining the maximum size of each block for one
OST (by example, if set to 1MiB, a file of 4.5Mio will be separated in 5 blocks).

These two parameters can be set by using the Lustre command lfs when creating the output directory (all
files in a directory inherit by default of its properties) or by using the following MPI-IO hints: striping factor
and striping unit.

For these tests, we chose to run the Sedov3D testcase with a resolution of 20483 on 1024 cores. Only the
MPI-IO approach was tested. The POSIX approach has no sense here because the created files are relatively
small and therefore won’t be striped on a lot of OSTs. The HDF5 and Parallel-netCDF fileformats should give
conclusions close to the MPI-IO one because they are based on it.

The obtained results are shown on the figure Fig. 3. We can observe that the striping factor (the number
of used disks) has an impact on the reading performance. If it is too small, it is reduced. From a certain level
(here between 30 and 60), there are no more gains. The effect of this parameter on the writing performance
seems negligible. However, it is likely that a very small value of the striping factor would lead to a reduced
writing throughput.
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If we set it to the maximum value (120 that corresponds to the number of OSTs of the studied filesystem),
the performance degrade slightly. This is probably a consequence of the shared ressources between all the
concurrent running jobs.

The filesystem blocksize (set with the striping unit parameter) has a strong influence on the writing per-
formance. Depending on the filetype, the effects differ. For the AMR file, a value of 4MiB seems optimal
(for this testcase). For the hydro file, if the value of the striping unit increazes, the performances too. The
granularity of the I/O operations being smaller in the AMR file than in the hydro file (a factor 8 for the big
data structures), the optimal value is probably shifted of this same factor. Increazing further the striping unit
would very probably degrade the throughput of writing the hydro file.

For reading, the striping unit parameter shows no influence. However, low values of it could have a negative
impact.

In conclusion, we saw that the way the file are striped can have a big impact on the performances. New
scalability tests with different values of them would be interesting. These tests were not conducted here by lack
of computational resources and human time.

4. Conclusion

In this study, we performed two kinds of parallel I/O mesurements on the Tier-0 CURIE supercomputer. In a
first series of tests, by using the IOR micro-benchmarks we have studied the impact of API (MPI-IO, HDF5,
PnetCDF) and of MPI-IO hints on measured reading and writing throughputs. We have shown that in the
particular case of a quite large shared file of size 256 GiB, it is best to disable both data sieving and collective
buffering MPI-IO optimization techniques. In a second series of tests, we used a real scientific application
from the astrophysics community (code RAMSES) where the I/O pattern is much more complex due to the
use of an adaptive mesh refinement algorithm. Theses two series of tests demonstrate that for a high number
of cores (espacially in the RAMSES case), MPI-IO performances become comparable to the POSIX approach
(one file per process). This last observation is less true for HDF5 and PNetCDF. Finally, we study the impact
of some LUSTRE filesystem parameters. First, the striping factor should be large enough, up to the number
of LUSTRE OSTs, to have a good reading bandwidth, and then the striping unit size is demonstrated to be
important to the writing performance.

This study, despite being far from exhaustive, should be considered as a starting point to a better under-
standing of tuning parallel IO on current PRACE Tier-0 supercomputers.
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