PRACE Scientific Conference 2013

591 TFLOPS Multi-TRILLION Particles Simulation on SuperMUC

W. EckhardtTUM, A. HeineckeTUM, R. BaderLRZ, M. BrehmLRZ, N. HammerLRZ, H. HuberLRZ, H.-G. KleinhenzLRZ, J. VrabecThEt, H. HasseLTD, M. HorschLTD, M. BernreutherHLRS, C. W. GlassHLRS, C. NiethammerHLRS, A. BodeTUM,LRZ, H.-J. BungartzTUM,LRZ

June 16, 2013
Outline

Introduction

Target Platform: SuperMUC

Computational Model

Implementational Details

591 TFLOPs Multi-trillion Particles Simulation

Current Research and Outlook
Applications of Interest

Applications in Process Engineering:

- Study of nano-scale flows
- Study of interfacial phenomena
- Size dependence of interfacial quantities such as the surface tension
- Behavior of droplets, interactions between droplets, nucleation
- Mixing behavior of fluids

Several simulations methods available:

- Simulation methods vary in their level of detail
- The more detail, the more predictive power
- Force field methods are favorable with respect to scaling and materials behavior
Molecular Dynamics Simulations

Force field based methods:

- Classical models for molecular interactions (parameters have a physical interpretation)
- Contain all thermodynamic properties (static, dynamic, surface properties)
- Straightforwardly applicable to mixtures
- Excellent predictive power and technical accuracy
- Directly applicable for studies of fluids

Massively parallel molecular dynamics code *ls1 mardyn*:

- Arbitrary mixtures of rigid molecules
- “Large” systems, “long” time scales
- Written in object-oriented C++, parallelized with MPI
- Lennard-Jones potential, electrostatic interactions

W. Eckhardt et. al.: 591 TFLOPS Multi-TRILLION Particles Simulation on SuperMUC
PRACE Scientific Conference, June 16, 2013
Example: Diffusion

gaseous (nitrogen) + liquid phase (acetone): $T = 350$ K, $p = 3$ MPa, $N = 1,000,000$

Mutual diffusion
Example: Vapor-liquid equilibrium

Drop of acetone in its vapor phase: $T = 350 \text{ K}$, $N = 1,000,000$

Calculation of properties of the curved surface, e.g. surface tension
Example: Collisions of Nanoscale Droplets

Substances modelled by 1 Lennard-Jones site, truncated and shifted:

- Ar / Kr / Xe
- Methane

and interaction of two droplets of different kind, e.g. Argon \leftrightarrow Methane

Collision of droplets in vacuum:

- Create equilibrated initial configuration separately
- Place droplets in vacuum
- Set initial velocities
Outline

Introduction

Target Platform: SuperMUC

Computational Model

Implementational Details

591 TFLOPs Multi-trillion Particles Simulation

Current Research and Outlook
SuperMUC - System Topology

- IBM System x iDataPlex, > 155,000 cores in total (Sandy Bridge-EP + Westmere)
- Theoretical double precision peak performance of 3 PFLOPS
- Novel warm water cooling

http://www.lrz.de/services/compute/supermuc/systemdescription/
Intel Sandy Bridge EP Processor Architecture

- µOp decoded cache; optimal for small kernels
- Features Advanced Vector Extensions: AVX128 and AVX256
- Hyperthreading technology to increase core utilization
Outline

Introduction

Target Platform: SuperMUC

Computational Model

Implementational Details

591 TFLOPs Multi-trillion Particles Simulation

Current Research and Outlook
Molecular Dynamics Simulation

Discrete particles i and j with position x and velocity \dot{x} interact via potential $U(r_{ij})$:

- Truncated and shifted Lennard-Jones-12-6 potential $U_{LJ}(r_{ij})$ with potential parameters ϵ and σ:

 $$U_{LJ}(r_{ij}) = 4\epsilon \cdot \left(\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right).$$

- Total effective force on a molecule i:

 $$F_i = \sum_{j \in \text{particles}, j \neq i} F(r_{ij}).$$

- Perform time integration: $F = m \cdot \ddot{x}$

- Calculate statistical data:

 Potential energy:

 $$U_{pot} = \sum_i \sum_{j \neq i} U(r_{ij}).$$

 Virial pressure:

 $$p = \frac{1}{2} \sum_i \sum_{j \neq i} r_{ij} \cdot F_{ij}.$$
Linked-Cell Algorithm

The Lennard-Jones potential is evaluated explicitly up to a cutoff radius r_c

⇒ Consider only local neighbors of a molecule

Linked-Cells-Algorithm:

- Subdivide domain in cells of edge-length $l = r_c$
- Neighboring molecules are contained in same or adjacent cells:
 ⇒ Linear runtime of neighbor search
- Inherently cache-friendly

Linked-Cells-Algorithm with periodic boundary conditions:

Extend Linked-Cells structure by one cell layer to replicate particles from opposite boundary
Parallelization of the Linked-Cell Algorithm

- Communication along spatial dimensions (6 instead of 26 communication partners)
- Non-blocking, overlapping MPI Send/Receive:
 - Start receive operation for both neighbors along spatial dimension
 - Start send operation
 - Wait until all operations finished
- AllReduce operations for global values / statistics
Outline

Introduction

Target Platform: SuperMUC

Computational Model

Implementational Details

591 TFLOPs Multi-trillion Particles Simulation

Current Research and Outlook
Memory-efficient Implementation of Linked-Cells

- Cells are traversed by sliding window in FIFO-order
- For each particle outside the sliding window, store only
 - Position \vec{x}: $3 \times 4 \text{ B} = 12 \text{ B}$
 - Velocity \vec{v}: $3 \times 4 \text{ B} = 12 \text{ B}$
 - Identifier id: 8 B
 - Total: 32 B
- For each molecule inside the sliding window, store additionally the force
 \Rightarrow minor overhead in terms of memory
- Perform time integration, when cell moves out of sliding window
Implementation of the Compute Kernel

The software is written in object-oriented C++ (Array of Structures) ⇒ trade-off between cache-efficiency and vectorization

- Copy members needed to temporary Structure of Arrays on per–cell basis
- Vectorize over molecules per cell, not spatial coordinates, to fully exploit vector length
- Convert back

- SoA nicely integrates with sliding window traversal ⇒ negligible memory overhead
Implementation of the Compute Kernel cont’d.

Implementation with intrinsics using single-precision AVX128 instructions:

- AVX256 only of advantage for large cutoff radii, i.e. long arrays per cell
- Better performance on AMD’s Interlagos

Compute 4 interactions in parallel, mask pairs where distance $d_{a,i} > r_c$

- Large number of elements masked \Rightarrow gather / scatter would be beneficial

Lack of instruction-level parallelism in kernel:

- Multiplications dominate

- Multiplications show true dependencies: $U(r_{nm}) = 4\epsilon \cdot \left(\left(\frac{\sigma}{r_{nm}} \right)^{12} - \left(\frac{\sigma}{r_{nm}} \right)^{6} \right)$
Light-weight Shared-memory Parallelization

The Lennard-Jones kernel inhibits efficient use of superscalarity and pipelining ⇒ make use of Hyperthreading to increase efficiency

Extend window and introduce synchronization barrier

Preprocessing (converting particle data to SoA) and postprocessing (time integration) have to be executed sequentially by master thread

Not scalable, but ⇒ for Hyperthreading optimal performance gain of 12 %:

- Cheap synchronization
- True sharing in private L1/L2 cache
Outline

Introduction

Target Platform: SuperMUC

Computational Model

Implementational Details

591 TFLOPs Multi-trillion Particles Simulation

Current Research and Outlook
This corresponds to a single-core performance of 10.9 %
Experiment Setup

- Single-site Lennard-Jones particles setup on a body-centered cubid lattice
- Number density $\rho \sigma^3 = 0.78$, cut-off radius $r_c = 3.5\sigma$
- Strong scaling: $4.8 \cdot 10^9$ particles
- Weak scaling: $4.52 \cdot 10^8$ per node
- Largest simulation on 9126 nodes with $4.125 \cdot 10^{12}$ particles
- In case of liquid krypton: cube with edge-length $l = 6.3 \mu m$
Scalability Results

Strong scaling:

- $4.8 \cdot 10^9$ particles
- Particles per process for 146016 cores: ≈ 33000
- Peak performance of 260 TFLOPS on 146016 cores
- Runtime of 0.15 s / iteration
- Parallel efficiency of 42% on 146016 cores (292032 threads) compared to 128 cores (256 threads)
Scalability Results

Weak scaling:

- $4.52 \cdot 10^8$ particles / node
- Peak performance of 591 TFLOPS on 146016 cores
- Parallel efficiency of 86.3 % on 146016 cores (292032 threads) compared to 1 core (2 threads), i.e. 9.4 % peak performance
- Maximum number of $4.125 \cdot 10^{12}$ particles with runtime of 40s / iteration
Influence of the number of particles

Investigate performance in dependence of particle number and cut-off radius:

- Larger cut-off radius favorable from application point of view
- Smaller cut-off radius favorable from computational point of view

Performance on 8 nodes / 128 cores

- For \(N = 3 \cdot 10^8 \) particles, flop rate of roughly 550 GFLOPs
- Strong scaling: decrease of efficiency largely due to decreasing single-node performance
Outline

Introduction

Target Platform: SuperMUC

Computational Model

Implementational Details

591 TFLOPs Multi-trillion Particles Simulation

Current Research and Outlook
Extension to Multi-Site Molecules

Rigid-body multi-site particles are described by position, velocity, orientation, angular velocity and type

Two molecules interact, if the distance between their centers of mass is smaller than the cutoff radius r_c.

Total effective force on a molecule i:

$$F_i = \sum_{j \in \text{particles}, j \neq i} \sum_{n \in \text{sites}_i} \sum_{m \in \text{sites}_j} F_{nm}(r_{nm}).$$

Potential energy:

$$U_{pot} = \frac{1}{2} \sum_{i} \sum_{j \neq i} \sum_{n \in \text{sites}_i} \sum_{m \in \text{sites}_j} U_{nm}(r_{nm}).$$

Torque on the molecule

$$\tau_i = \sum_{n \in \text{sites}_i} d_n \times F_n.$$}

Virial pressure on the molecule

$$p = \frac{1}{2} \sum_{i} \sum_{j \neq i} \sum_{n \in \text{sites}_i} \sum_{m \in \text{sites}_j} F_{nm}(r_{nm}) \cdot r_{ij}.$$
Vectorized Implementation for Multi-Site Molecules

Straight-forward extension of scheme: store position of molecule with each site

- **Pro**: Simple calculation of mask for blending forces
- **Con**: Quadratic increase of evaluations of the cutoff condition with number of sites

![Diagram](image)

Solution:
- Compute distances on molecule – center basis, store blend mask
- Skip force calculation completely for non-interacting molecules
• First results of implementation for multi-site molecules with AVX256 (DP)
• Runtime for $10.7 \cdot 10^6$ particles at liquid density

![Graphs showing runtime vs. number of cores for different Lennard-Jones configurations](image-url)
Outlook on Intel Haswell

- Duplication of MUL/ADD-ports for FMA
- Increased L1-bandwidth (64-byte write / 32-byte read)

W. Eckhardt et. al.: 591 TFLOPS Multi-TRILLION Particles Simulation on SuperMUC
PRACE Scientific Conference, June 16, 2013
The Intel Xeon Phi SE10P

- 61 cores with 4 threads each at 1.1 GHz
- 32 KB L1$, 512 KB L2$, per core
- L2$ are kept coherent through a fast on-chip ring bus network
- 512 bit wide vector instructions, 2 cycle throughput
- 1074 GFLOPS Peak DP / 2148 GFLOPS Peak SP
- 8 GB GDDR5, 512 bit interface, 352 GB/s

http://ark.intel.com/de/products/71991/Intel-Xeon-Phi-Coprocessor-SE10P-8GB-1_100-GHz-61-core

Usage Models:

```
CPU
CPU centric MIC centric
CPU hosted     offload to MIC       symmetric      offload to CPU     MIC hosted
Main() Compute() Comm()      Main() Compute() Comm()     Compute_h()      Compute_m()      Main() Compute() Comm()

MIC
Main() Compute() Comm()      Main() Compute_m() Comm()     Main() Compute() Comm()     Main() Compute_h() Comm()      Main() Compute() Comm()
```

W. Eckhardt et. al.: 591 TFLOPS Multi-TRILLION Particles Simulation on SuperMUC
PRACE Scientific Conference, June 16, 2013
So far, AVX-Code directly ported to MIC

AVX-256 (DP):
- Compute distances
- Execute force computation
- Compute distances
- Skip force computation

MIC-512 (DP):
- Compute distances
- Execute force computation

Ongoing work:
- Incorporation of gather / scatter instructions
- Shared-Memory parallelisation
- Load balancing considering heterogeneous system
- Use both SNB and MIC cores
KD-Tree-based Loadbalancing

- Hierarchical subdivision of the simulation volume through recursive bisection
- Choice of planes for bisection that lead to an equal load in the sub-domains
- Designed for strongly inhomogeneous molecular systems
- Capable to deal with rapidly changing inhomogeneity
Conclusion

- Applications in Chemical Engineering require large-scale molecular dynamics simulation
- We have presented our highly-tuned, highly-scalable implementation for single-site molecules
- Bridging the gap between microscopic and macroscopic scales will be soon possible
- Based on the experience gained we are able to tune our main code

Both efficient, hardware-aware programming and carefully tweaked algorithms are neccessary to tackle “large“ problems
Thank you for your attention!
Backup: Time Integration Methods

- Explicit Euler (1st order):

\[\vec{v}(t + \Delta t) = \vec{v}(t) + \Delta t \frac{\vec{F}(t)}{m} \]
\[\vec{r}(t + \Delta t) = \vec{r}(t) + \Delta t \frac{\vec{F}(t)}{m} \] (1)

- Leap-Frog Integrator (2nd order):
 the velocity calculations are shifted for a half time step with respect to the position calculations:

\[\vec{v}(t + \frac{\Delta t}{2}) = \vec{v}(t - \frac{\Delta t}{2}) + \Delta t \frac{\vec{F}(t)}{m} \]
\[\vec{r}(t + \Delta t) = \vec{r}(t) + \Delta t \vec{v}(t + \frac{\Delta t}{2}) \] (4)
Backup: Intel Haswell

- Branch Prediction
- uOP decoded Cache (1.5k uOps)
- 32 KB L1 Instruction Cache
- Instruction Fetch and Pre-Decode
- 4-way Decode
- Rename/Allocate/Retirement (Reorder-Buffer: 192 Entries)
- Scheduler (physical registerfile: 168 256bit VPU registers, 168 integer registers)
- ALU
 - SSE/AVX
 - MUL
 - SSE/AVX
 - Shuffle
 - DIV
 - AVX FMA
- Port 0
- Port 1
- Port 5
- Port 6
- Port 2
- Port 3
- Port 4
- Port 7
- Memory Control
- 32 KB L1 Data Cache
- 32 KB L1 Data Cache
- 256 KB L2 Cache (MLC)

W. Eckhardt et. al.: 591 TFLOPS Multi-TRILLION Particles Simulation on SuperMUC
PRACE Scientific Conference, June 16, 2013