Korean Grand Plan for Industrial SuperComputing

April 17, 2012

Sang Min Lee, Ph.D.
KISTI SMB Information Center
Contents

Background

Historical Review on Industrial supercomputing in KOREA

Economic Effects on SME through SMB supercomputing

A Grand plan for Industrial supercomputing

Conclusion Remark
Background

Current State of Korean SMB (SME, SMM)

- Companies: 99%
- Employees: 88%
- Innovation Level: ~70%
 (~40% in product design, ~95% in manufacturing)

⇒ K-SMB: very important position in Korean economy

⇒ But they need to level up new technology & new innovation level
Background

Global Trend & Efforts

America (US)
- Digital Manufacturing (2011~)

Europe
- PRACE/e-infrastructure (2007~)

Korea
- SMB Supercomputing (2007~)

Japan
- FOCUS (2011~)
Historical Review on Industrial Supercomputing in Korea

M&SA Technology support Effects

Center & Business

2007 Inno- biz

2008 Inno- biz

2009 SMB

2010 SMB/ASTI

2011 SMB/ASTI

SMB Support

SMB Support using Supercomputing

SMB Support using Supercomputing

M&SA Environment

Roadmap

Build development direction for LARD

Develop prototype

Supply demonstration

Develop Convenience environment using supercomputer

Developed axial-flow fan simulator

Build development direction for LARD

Develop LARD environment by remote control

Develop & apply 3D visualization environment

Develop 3D visualization environment

Develop FANSIM

Develop K-Weld

Complete FANSIM

Complete K-Weld

Build & apply 3D visualization environment

3D visualization environment by remote control

Develop LARD development

Support LARD demonstration

Supported SMB Blue Ocean

Technical development using supercomputer Platform of design supporting for c-MES

Supported SMB M&S Environment Platform of design supporting for c-MES

SMB Support using Supercomputing

Technical development using supercomputer Platform of design supporting for c-MES

Development of axial-flow fan simulator

Developed FANSIM

Developed K-Weld

Complete FANSIM

Complete K-Weld

Develop convenience environment using supercomputer

Develop 3D visualization environment

Develop FANSIM

Develop K-Weld

Complete FANSIM

Complete K-Weld

Develop convenience environment using supercomputer

Developed axial-flow fan simulator

Developed FANSIM

Developed K-Weld

Complete FANSIM

Complete K-Weld

Develop convenience environment using supercomputer

Developed axial-flow fan simulator

Developed FANSIM

Developed K-Weld

Complete FANSIM

Complete K-Weld

Develop convenience environment using supercomputer

Developed axial-flow fan simulator

Developed FANSIM

Developed K-Weld

Complete FANSIM

Complete K-Weld

Develop convenience environment using supercomputer

Developed axial-flow fan simulator

Developed FANSIM

Developed K-Weld

Complete FANSIM

Complete K-Weld

Develop convenience environment using supercomputer

Developed axial-flow fan simulator

Developed FANSIM

Developed K-Weld

Complete FANSIM

Complete K-Weld

Develop convenience environment using supercomputer
Historical Review on Industrial Supercomputing in Korea

Objectives:
- Share HPC service model, policy and HPC technology

Participants:
- NCSA, OSC, TACC, Oak Ridge (US), HLRS, EPCC, CINECA (EU), SSC (CN), iHPC (SG), Kei-SC, Univ. of Tokyo (JP), KISTI (KO)

Events:
- Daejeon KOREA (KISTI, May 2010)
- Stuttgart Germany (HLRS, May 2011)
- Urbana-Champaign United State (NCSA, June 2012)
Economic Effects on SMB through SMB supercomputing

Inno-QCT: Quality, Cost, Time

- **Q**: Optimizing Quality
- **C**: Minimizing Cost
- **T**: Minimizing Time

New Value Creation

- Time to produce
- Time to market
- Time to Delivery
Economic Effects on SMB through SMB Supercomputing

Overall Effects

- **Reduce of time**
 - 43 Month → 5 Month (88% reduction)

- **Reduce of cost**
 - 3 B won → 0.3 B won (90% reduction)

- **Increase of total sales**
 - Expecting to increase 5 B won per year
Economic Effects on SMB through SMB Supercomputing

Main Supports on SMB Product Development

Product Design Simulation
- 3D Product Design & Engineering Supports based on Supercomputing
- Reduction of Cost and Time through Adapting Virtual Design Technology

Air Condition Cast Analysis Heat Exchange New Renewable Energy

Industrial Design/Visualization
- Industrial Design for New Products
- Photo-realistic visualization & Simulation Visualization

Industrial Design for New Products VR/AR Visualization
A Korean Grand Plan for Industrial Supercomputing

Technology Innovation

R&D Infra
- Supercomputer
- Simulation S/Ws
- HP R&D Network

Consulting
- Modeling/Simulation
- Design/Visualization

Training
- Supercomputing
- Simulation S/Ws

Experts
- 300 domain Experts
- Human Network

NATIONAL-WIDE SUPPORTING PLATFORM

- Headquarter: KISTI
 - Large-scale Applications
- 7 Regional Centers
 - Small/Medium-scale Applications
Policy Suggestions for SMB HPC M&S Invigoration

SMB Innovation
National Competitiveness

HPC M&S: Innovation tool for product development in SMB

Changing Mind

Promotion for Utilizing HPC M&S by SMB

Expanding investment

Success Factors
- Research & Development
- HPC Environment
- Training the expert
- Systematize a service
- Professional organization
Securement of Global Competiveness through HPC M&S

Over 95% Products produced by Digital Manufacturing based on HPC

Innovative Improvement of QCD
* QCD: Quality, Cost, Delivery

- Production Innovation
- Process Innovation
- Design Innovation
Establishment of easy and effective HPC Environment

Physical Center: SMB M&S Cloud Computing Center

- 1 Step (12~13) : Build the HPC cloud computing center using supercomputer (KISTI)

- 2 Step (14~15) : HPC Cloud Center (KISTI) + DDIC (SMBA) + Local Centers (PLSI)

R&D Environment: HPC S/W Environment

- Safely providing commercial M&S software
- Providing web portal services
- Expansion of open source software
Structure of Digital Manufacturing Service for SMB

Research & Development
- Product Innovation
- Process Innovation
- Design Innovation

Institute- University- company

HPC Platform : KISTI
- KISTI S/W : e-spline, BioWorks
- Foreign S/W : e-Weld, Adventure...
- Commercial S/W : FLUENT, ANSYS...

Use

Functional intension

Training Developer

Training User
- School of HPC user

Networking
- Symposium, Workshop...

Out Reach
- Expansion of users

Co-Open Innovation System using HPC

SMBA DDIC PLSI KITECH Center in local

National HPC Cloud Computing Center
Build Co-Working Group at KISTI (HPC Platform)

- Benchmark NCMS Model
 * NCMS: National Center for Manufacturing Science (US)

- Operation of SIG (Strategic Interest Group) & 3 KSF
 - Talent: Skill, Expert, Knowledge
 - Investment: Budget for R&D
 - Infrastructure: Facilities, Resource, Tools

K-NCMS + DDIC
Conclusion Remark

We will make a **Backbone Program** - **Super-DM Initiative**- fully supported by government to establish Korean-Style HPC M&SA environment for SMB.
Thank you very much!

Sang Min Lee
Korea Institute of Sciences and Technology Information
SMB Information Center