

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Enabling SPEED for near Real-time Earthquakes Simulations

Paride Dagnaa*
a
CINECA-SCAI Department, Via R. Sanzio 4, Segrate (MI) 20090, Italy

Abstract

SPEED (Spectral Element in Elastodynamics with Discontinuous Galerkin) is an open source code, jointly developedby the
Department of Structural Engineering and of Mathematics at Politecnico di Milano, for seismic hazard analyses.
In this paper, performanceresults, which come from the optimization and hybridization work done on SPEED, tested on the
CINECA Fermi BG/Q supercomputer will be shown. A comparison between the pure MPI and the hybrid SPEED versions on
three earthquake scenarios, with increasing complexity, will be presented and a detailed analysisof the advantages that come from
hybridization and optimization of the computing and I/O phases will be given.

1. Introduction

The variety and extent of impacts caused by the destructive earthquakes of recent years on the built and natural
environment, such as during the 2008 Wenchuan (China), 2009 L'Aquila (Italy) and 2010-2011 Christchurch (New
Zealand) earthquakes, revealed dramatically the need for improving the tools for seismic risk assessment. In the last
twenty years there has been an impressive progress worldwide towards the development of deterministic ground
shaking scenarios used as input for seismic hazard and risk assessment studies, relying on numerical simulation of
seismic wave propagation under realistic tectonic and geo-morphological conditions.

Nowadays, standard seismic hazard analysis is achieved through a well-consolidated approach, namely
Probabilistic Seismic Hazard Analysis [1].As a basic ingredient, the method requires a suitable tool for predicting
the earthquake ground motion produced at the target site by potential earthquakes along any possible rupture areas
of the seismogenic source.

The standard approach is through Ground Motion Prediction Equation (GMPE). However, despite their
simplicity, GMPEs may not be suitable to reproduce specific ground motion features due to the scarcity of the
calibration data set in the near field of an earthquake (i.e.: Christchurch, New Zealand, or recent Emilia-Romagna,
Italy) or for very large subduction events (i.e.: Maule, Chile, or Tohoku, Japan).

* Corresponding author. E-mail address: p.dagna@cineca.it

 Paride Dagna: Enabling SPEED for near real-time earthquakes simulations

2

Therefore, under such conditions, the only way to estimate accurately the seismic hazard might to adopt a more
physical approach capable to limit the systematic bias between data and prediction [2].

However, to include in a single physics-based model the coupled effects of the seismic source, the propagation
path through complex geological structures and localized superficial irregularities, such as alluvial basins
orsynthetic structures, still poses challenging demands on computational methods and resources due to the
coexistence of very different spatial scales, from a few tens of kilometers, with reference to the seismic fault, up to a
few meters, or even less, when considering some structural elements.

Motivated by these considerations, the open-source code SPEED (Spectral Element in Elastodynamics with
Discontinuous Galerkin), was developed jointly by the Department of Structural Engineering and of Mathematics at
Politecnico di Milano[3].This paper presents an improved hybrid version or the code that allows near real time
simulations on peta scaling architectures with high efficiency.

SPEED is written in Fortran90 and conforms strictly to the Fortran95 standard. The SPEED package uses
parallel programming based upon the Message Passing Interface (MPI) library relying on the domain decomposition
paradigm. The mesh generation may be accomplished by a third party software, e.g. CUBIT [4]and then exported in
a compatible format. Load balancing is facilitated by graph partitioning based on the open-source library METIS
[5], which is included in the package. The I/O operations accomplished by SPEED during its execution do not
require external libraries.

The paper is organized as follows. In Section 2 the main features of the HPC system used are listed, in Section 3
the bottlenecks of the original pure MPI version of SPEED are highlighted and the new hybrid parallelization
strategy is presented.Performance and results analysis areshown in Section 4.

2. Tier-0 system specifications and installation notes

All the tests that will be presented in this document have been executed on Fermi, a Tier-0 machine which is at
present the main CINECA’s HPC facility.

Fermi [6] is an IBM BlueGene/Q system composed of 10.240 PowerA2 sockets running at 1.6GHz, with 16 cores
each, totaling 163.840 compute cores and a system peak performance of 2.1 PFlop/s. The interconnection network is
a very fast and efficient 5D Torus.Fermi is one of the most powerful machines in the world, and it has been ranked
#9 in the top 500 supercomputer sites list published in November 2012.

SPEED was built with IBM XL compilers and BG/Q system proprietary MPI. The code has been profiled using
the TAU Performance System®analyzer [7].

3. Hybridization strategy

The algorithm implemented in SPEED can be subdivided in three different stages, as described in Figure 1: in the
first two partsof the algorithm (1-2) the parameters for the parallel computation are set, while in the latter part (3)
the time advancing scheme is performed and the output results are written.

After reading the input data (1.a) and accomplishing the domain decomposition (1.b) the master process calls
the mesh partitioner METIS to decompose the computational domain and to generate local meshes for all the other
processes. The latter are written into separate files, and then read by each MPI process(1.c). For parametric
simulations the domain decomposition is executed once.

The second stage of the algorithm is related to the setup of arrays and variables employed within the time
marching scheme (2.a). This also includes the preparation of buffers for MPI communications (2.b).In the last part

 Paride Dagna: Enabling SPEED for near real-time earthquakes simulations

3

of the algorithm the time advancing scheme is executed. For each time step in the iterative loop, three different
kinds of operations are performed: local computations (3.a), MPI communications (3.b) and output writing (3.c).

Fig. 1. SPEED Workflow.

In Figure 2,obtained with the TAU profiler, ordered according to the inclusive time in seconds (time spent in the

routine and its descendants), the exclusive and inclusive time and the number of calls and child calls is presented.
Looking at the image it’s clear that the “TIME_LOOP” routine, called by “SPEED”, which is the main routine of
the whole code, is the most critical and time consuming section. This is true above all for large meshes and long
simulation times, since the time advancing scheme is carried out. For this reason the time loop routine ad its
descendants became the object of a deeper investigation.

Fig. 2. SPEED, view of the time spent in the main routines of the code.

 Paride Dagna: Enabling SPEED for near real-time earthquakes simulations

4

Concerning the computing phase,in the TIME_LOOP routine, two nested loops (fig. 3) were performed to span

all the subdomain elements ordered by a progressive material indexand a conditional clause was present at the
beginning of the inner loop so that operations were performed only after checking if the current element belonged to
the correct material.

Looking carefully at the logic of the algorithm it was found that the ordered loop over materials and the
conditional clause were not necessary. Consequentlythe external loop on materials was removed and the internal
loop adapted in order to span all the elements for each subdomain (fig 3).

Fig. 3. SPEED, optimization of the TIME_LOOP routine.

Since, operations made on different elements are independent, the solution just proposed allowed to add, at this

level, a further Open-MP parallelization. The optimized hybrid version of SPEED was then obtained creating a
parallel region before the loop over subdomain elements.

Measuring the exclusive time per call it was found that the old I/O routine “WRITE_OUTPUT_OLD” in which
I/O operations were coded was a serious bottleneck to scalability (fig. 4, image on the left). The original algorithm
implemented in this function stated that each MPI process can write multiple files but only one row was added at a
time. As a consequence, for large scenarios, with many cores, required managing thousands of files in parallel by the
file system, causing an unacceptable slowdown or even the complete stall of the simulation.

Fig. 4. SPEED, optimization of the I/O and computing phase. Times are in seconds. Old routine on the left “WRITE_OUTPUT_OLD”, new

routine on the right “WRITE_OUTPUT”. Old “TIME_LOOP” routine on the left, new “TIME_LOOP” routine on the right.

 Paride Dagna: Enabling SPEED for near real-time earthquakes simulations

5

A new strategy and a new routine was implemented (WRITE_OUTPUT) where each MPI process manages only
one file and multiple rows can be written at a time, resulting in a dramatic reduction of the time spent for
I/Ooperations (fig. 4, image on the right). The optimizations described allowed to obtain an overall 5x speed-up of
the TIME_LOOP routine (fig. 4).

The latter optimized version, not only improves the performance of SPEED in terms of the overall computational
time, but also solves a great memory constraint present in the pure MPI version.In fact in the pure MPI version only
the single MPI process is able to work on its own chunk of data whereas in the hybridized version each MPI process
can take advantage of a selected number of OpenMP threads to work on the same chunk of data. This benefit can be
a key turning point for a more effective memory usage of the available hardware when real earthquake scenarios are
faced.Within this kind of problems, stated a defined value of memory and of computational cores per node, the
number of MPI process that can be instantiated on the single node is not arbitrarysince it is bounded by the available
memory on the node and the memory needed by each MPI task to allocate the data used within each subdomain. In
the pure MPI version this value represent also the number of usable computational cores per node whereas on the
hybridized version each MPI process can call several OpenMP threads to fully exploit the multi-core hardware
configuration. For this reasons in the pure MPI version to simulate real earthquake scenarios, only a subset of the
available cores per node can be used,wasting a value of computing resourcesper node that is related to the memory
request of the sub-process and to the memory availability of the hardware configuration. Using the
hybridizedversion of the code, as shown in sections 4.1 and 4.2, the value of MPI tasks and OpenMP threadsper
computational node can be mixed to fully exploit the hardware availability.

In our hardware configuration, as presented in section 2, the IBM PowerA2 processors allow to use 16GB of ram
and 16 computational cores per node. So that to face the two test cases analyzed (see section 4.1, 4.3 in the
forthcoming), in order to respect the memory constraint of the single computational node, we were obliged to use
only 8 cores and 4 cores per node respectively in the pure MPI version of the code.So that for instance to submit the
requested degree of parallelism of 64 we needed to reserve on the machine 128 and 256 cores respectively wasting a
relevant amount of unused computational cores. By converse in the hybridized version of the code we were able to
use for each test case all the cores per node available by splitting the overall degree of parallelism request in MPI
tasks and OpenMP threads.So that for instance the reserved128 and 256 cores can be fully used by means of 64 MPI
process plus 2 OpenMP threads and 64 MPI process plus 4 OpenMP threads.

For these reasons in the forthcoming, in order to highlight the benefits obtained by hybridized version of the code
with the respect to the pure MPI one, we performed the speed-up evaluation by normalizing the elapsed-time using
either the number of cores used and the number of cores reserved.

4. Test cases and results analysis

In sections 4.1 and 4.2 the selected test cases and the related performance and scalability results obtained with
thepure MPI and hybrid version of SPEED will be presented.

Because of the memory issues explained in chapter 3, the pure MPI version had to be run using only half of the
sixteen cores available on each node for tests 4.1 and 4.2 and only 4 of the sixteen cores available on each node for
benchmark 4.3.

For this reason in sections 4.1 and 4.2 a further test, based on the number of cores necessarily reserved by the
pure MPI version because of the memory constraints, is inserted to demonstrate how the hybrid solution which is
not memory bounded, allows to fully exploit the features of the BG/Q PowerA2 processors,capable of managing up
to 4 threads per core for a total amount of 64 processes per node [8].

The results of the pure MPI runs refer to thecode with improved I/O,because of the issues explained in section 3,
over 1024 coresthe simulations stalledwith the old I/O routine.

In section 4.3 a further performance and scalability test on a larger domain, referring to the Po plain, is shown.

 Paride Dagna: Enabling SPEED for near real-time earthquakes simulations

6

4.1. Conforming mesh - Layer Over Halfspace

The problem is known in literature with the acronym LOH (Layer Over Halfspace) [9] and it is currently a
reference benchmark for different advanced numerical codes for seismic wave propagation. The computational
domain is O = [30 × 30 × 17] km, with 814.833hexahedral elements, varying from size of 100 m, in the first
quadrant, to 300 m in the remaining part of the domain. The top layer has a thickness of 1 km.

In table 1 the speed up and efficiency of the pure MPI and hybrid version are reported. Due to the very high
degree of parallelism tested (up to 8k cores) and to the extremely large computational time requested by the single
core test (stimated in about 300 days) we started our analysis starting from a minimum degree of parallelism equal
to 64.The results show how the combination of MPI tasks and OpenMP threads allow increasing the performance,
using the same number of cores, because of the reduced MPI communication at the interfaces between subdomains.

Table 1. Speed-up and efficiency of the pure MPI and hybrid OpenMP + MPI .

Pure MPI version Hybrid MPI + OpenMP Hybrid

vs
Pure MPI

Cores

Time
(sec)

Speed
up

Efficiency

MPI
 tasks

OpenMP
threads

Time
 (sec)

Speed
up

Efficiency

64 469800 64 1 64 0 469800 64 1 1,00
512 63000 477 0,93 64 8 60250 499 0,97 1,05
1024 35500 847 0,83 64 16 35500 847 0,83 1,00
1024 512 2 31500 955 0,93 1,13
2048 18900 1591 0,78 512 4 15950 1885 0,92 1,18
2048 1024 2 16650 1806 0,88 1,14
4096 10800 2784 0,68 512 8 8400 3579 0,87 1,29
4096 1024 4 8600 3496 0,85 1,26
4096 2048 2 8200 3667 0,90 1,32
8192 7407 4059 0,50 1024 8 4500 6682 0,82 1,65
8192 2048 4 4420 6803 0,83 1,68
8192 4096 2 5420 5547 0,68 1,37

Referring to table 1, in figure 5 the speed-up obtained from pure MPI runs and the best mixing of MPI tasks and

OpenMP threads is shown.

Fig. 5. SPEED, speed-up of pure MPI and mixed OpenMP + MPI solutions.

 Paride Dagna: Enabling SPEED for near real-time earthquakes simulations

7

As underlined in the introduction of chapter 4, because of the huge memory request the pure MPI version had to

be run using only half of the available cores on each node. In order to verify how the hybrid solution, which is not
affected by memory constraints, outperforms the pure MPI one, the LOH test was conducted using the same number
of cores necessarily reserved for the pure MPI runs (table 2, fig. 6).

Table 2.Comparison between original pure MPI and the hybrid OpenMP + MPI. The speed up of the hybrid version is computed in relation to

the timings of the pure MPI maintaining the same number of cores reserved.

Pure MPI version Hybrid MPI + OpenMP Hybrid

vs
Pure MPI

Cores
Reserved

Cores
Used

Time
(sec)

MPI
tasks

OpenMP
threads

OpenMP
per core

Time
 (sec)

128 64 469800 64 2 1 237600 1,98
128 64 4 2 134000 3,51
128 64 8 4 100350 4,68

1024 512 63000 512 2 1 31500 2,00
1024 512 4 2 16650 3,50
1024 512 8 4 8200 4,67
2048 1024 35500 1024 2 1 16650 2,13
2048 1024 4 2 8200 3,76
2048 1024 8 4 5420 5,26
4096 2048 18900 2048 2 1 8200 2,30
4096 2048 4 2 4600 4,11
4096 2048 8 4 3600 5,25
8192 4096 10800 4096 2 1 5420 1,99
8192 4096 4 2 2800 3,86
8192 4096 8 4 2070 5,22

Fig. 6.Comparison between original pure MPI and the hybrid OpenMP + MPI. The speed up of the hybrid version is computed in relation to

the timings of the pure MPI maintaining the same amount of cores reserved.

 Paride Dagna: Enabling SPEED for near real-time earthquakes simulations

8

4.2. Non conforming mesh–Layer Over Halfspace

The problem is the same of section 4.1 but for the non conforming mesh the number of hexahedral elements is
70.228, having a size of around 400 m in the upper layer (1 km thickness) and a size of around 650 m in the lower
layer (16 km thickness).

Following the same procedure of section 4.1, in table 3 the speed up and efficiency of the pure MPI and hybrid
version, maintaining the same number of cores, is reported. The reasons that cause a faster decrease of the parallel
efficiency compared to the conforming mesh are explained in chapter 5.

Table 3. Speed-up and efficiency of the pure MPI and hybrid OpenMP + MPI .

Also for non-conforming meshes, reducing the number of subdomains and MPI tasks and increasing the number

of OpenMP threads, with the hybrid solution a better speed-up is achievable (fig. 7).

Fig. 7. SPEED, speed-up of pure MPI and mixed OpenMP + MPI solutions.

Pure MPI version Hybrid MPI + OpenMP Hybrid
vs

Pure MPI
Cores

Time
(sec)

Speed up Efficiency

MPI
tasks

OpenMP
threads

Time
 (sec)

Speed
up

Efficiency

64 104500 64 1,00 64 0 104500 64 1,00 1,00
512 23600 283 0,55 64 8 14350 466 0,91 1,64

1024 16800 398 0,39 64 16 9450 708 0,69 1,78
1024 512 2 11250 594 0,58 1,49
2048 10100 662 0,32 512 4 6200 1079 0,53 1,63
2048 1024 2 7300 916 0,45 1,38

 Paride Dagna: Enabling SPEED for near real-time earthquakes simulations

9

In the same way of section 4.1 the test reported in table 4 and image 8 confirm the increasing of performances
achievable with the hybrid solution due to the better exploitation of the BG/Q architecture.

Table 4. Comparison between original pure MPI and the hybrid OpenMP + MPI. The speed up of the hybrid version is computed in relation

to the timings of the pure MPI maintaining the same number of cores reserved.

Pure MPI version Hybrid MPI + OpenMP Hybrid
vs

Pure MPI
Cores

Reserved
Cores
Used

Time
(sec)

MPI OpenMP OpenMP
per core

Time
 (sec)

128 64 104500 64 2 1 54000 1,94

128 64 4 2 30150 3,37

128 64 8 4 26550 3,94

1024 512 23600 512 2 1 11250 2,10

1024 512 4 2 6700 3,52

1024 512 8 4 4500 5,24

2048 1024 16800 1024 2 1 7300 2,30

2048 1024 4 2 4500 3,73

2048 1024 8 4 3280 5,12

4096 2048 10100 2048 2 1 5300 1,91

4096 2048 4 2 3150 3,21

4096 2048 8 4 2290 4,41

Fig. 8. Comparison between original pure MPI and the hybrid OpenMP + MPI. The speed up of the hybrid version is computed in relation to

the timings of the pure MPI maintaining the same amount of cores reserved.

 Paride Dagna: Enabling SPEED for near real-time earthquakes simulations

10

4.3. Structured mesh - Po Plain, Emilia-Romagna

The test case considered is the MW 6.0 29th May 2012 earthquake that struck the Po Plain, Emilia-Romagna,
North-eastern Italy. The model extends over a volume of about 74x51x20 km3 and is discretized using an
unstructured hexahedra mesh with characteristic element size ranging from ~ 150 m at the surface to ~ 1400 m at the
bottom of the model.

In this test only the hybrid version is used in order to show the scalability obtained from the optimization done on
the “setup” and “computing phase” on big real scenarios.

The number of cores (# Cores) is obtained choosing 4 OpenMP threads for each MPI process, (e.g. 1024 cores =
4 threads per 256 MPI processes).

In table 5 and fig. 9 the speed-up is shown up to 16384 cores.

Table 5. Speedup for the test case. The total wall time is divided in two parts: setup operations and time integration.

Cores Wall time (s) Speedup Setup (s) Speedup Time-loop (s) Speedup

1024 90176 1024 22176 1024 68000 1024

2048 39300 2349 11050 2055 28250 2464

4096 20100 4594 5496 4131 14604 4768

8192 9900 9327 2900 7830 7000 9947

16384 5700 16200 2300 9873 3400 20480

Fig. 9. Parallel efficiency of the code SPEED. Speedup normalized to 1024 cores versus number of cores.

 Paride Dagna: Enabling SPEED for near real-time earthquakes simulations

11

The super linear speedup obtained during the “time-loop” execution is due to cache effects of the BG/Q

architecture.

5. Result Analysis and discussion

The tables and graphs of sections 4.1 and 4.2 show how the hybrid optimized version is more performingthan the
pure MPI one and able to exploit almost all the computing power of the PowerA2 processors. Using shared memory
inside of subdomains,with OpenMP threads, it’s possible to reduce domain decomposition among MPI tasks and
consequently the amount of MPI communications, increasing the scalability. This behavior is more evident in non
conforming meshes.In the non conforming mesh the number of operations done by MPI tasks differs for the tasks
that have to deal with interface elements where additional terms must be computed to control the jump of the
solution among non conforming elements. For this reason load balancing and domain decomposition is not so
straightforward and efficiency decreases more quickly than for conforming meshes.

Anyway, as listed in table 3, hybridization allow to maintain an acceptable scalability also for non conforming
meshes up to thousands of cores.

The frequencyat which the PowerA2 sockets run is not very high (1.6GHz) but, as underlined in section 4, they
have the capability of managing up to 4 processes/threads per core for a total amount of 64 processes/threads per
node.

Using this feature,which is exploitable only with the hybrid version,with 4 OpenMP threads per coreit’s possible
to run up to 5.26 times faster respect to the pure MPI one reserving the same number of cores,demonstrating also the
good threads management of the multithreaded PowerA2 architecture.

As underlined in section 4, in order to avoid the stall of simulations over 1024 cores, the pure MPI tests were
conducted with the optimized I/O routine. The same tests, even if feasible with the old original I/O version, would
have been orders of magnitude slower.

In section 4.3 a scalability test of the hybrid version was performed on a structured mesh on the earthquake that
struck the Po Plain, Emilia-Romagna, North-eastern Italy. Because of the memory required by this simulation, only
4 MPI processes per node could be used.

As shown in Fig. 9 the efficiency of the “time loop” phase shows a growing super-linear effect due to the
increasinglybetter fit of the loops on the subdomains inside the processor’s caches. Also the “set-up” phase is
performing ideally up to 8192 cores. At 16384 cores the scalability of this phase is compromised by the MPI
communication among processors needed to build the map of the communicating faces.

Looking at the whole simulation, the speed-up of SPEEDis near to ideal values up to 16384 cores and a good
efficiency is expected even fora larger number of cores, confirming that the optimized hybrid version allow
managing scenarios intractable by the original pure MPI one.

6. Conclusions

As shown in fig. 9, the high parallel efficiency of the new hybrid version of SPEED, gives the possibility to run
simultaneously parametric simulations on a Tier-0 machine, dramatically reducing the execution time and making
such deterministic simulations feasible, producing reliable “real-time” results. Moreover, the complexity of the
models considered makes these deterministic simulations unaffordable not only on a single processor machine but
also on Tier-1 clusters.

In the near future the results of 3D ground-motion simulations obtained with SPEED, will be used to improve the
physical reliability of the numerical scenarios; this will allow, on one side, to estimate more precisely the seismic
hazard (i.e.: the spatial correlation of ground motion), on the other side, to understand which physical parameters
(i.e.: directivity, slip pattern) play a crucial role in terms of potential damages to the infrastructures.

 Paride Dagna: Enabling SPEED for near real-time earthquakes simulations

12

7. Acknowledgements

This work was financially supported by the PRACE-2IP project funded in part by the EUs 7th Framework
Programme (FP7/2007-2013) under grant agreement no. RI- 283493. The performance results were achieved using
the PRACE Research Infrastructure resources Fermi, CINECA, Italy.

8. References

1. Cornell C.A. Engineering Seismic Risk Analysis. "Bulletin of the Seismological Society of America", 58(6):1583-1606 (1968).

2. Boroschek R., Contreras V., Kwak D. Y. and Stewart J. P. 2012. Strong Ground Motion Attributes of the 2010 Mw 8.8 Maule, Chile,

Earthquake. Earthquake Spectra, 28(1): 19–38.

3. Stupazzini M., Mazzieri I. et al. SPEED project : http://mox.polimi.it/it/progetti/speed/

4. CUBIT Toolkit : http://cubit.sandia.gov

5. METIS library : http://people.sc.fsu.edu/~jburkardt/c_src/metis/metis.html

6. CINECA, Fermi User Guide. http://www.hpc.cineca.it/content/ibm-fermi-user-guide

7. TAU Performance System® analyzer. http://www.cs.uoregon.edu/research/tau/home.php

8. IBM System Blue Gene Solution: Blue Gene/Q Application Development, chapter 3.

9. Day S.M., Bradley C.R. 2001. Memory-efficient simulation of anelastic wave propagation. Bulletin of theSeismological Society of

America, 91(3): 520–531.

