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Abstract 

The OmpSs programming model supports task-based parallelism in a similar manner to OpenMP. This whitepaper explores the possibility of 

implementing an energy-aware scheduling policy in run-time component of the OmpSs programming model, to adapt task execution schedules 

for balancing energy efficiency with parallel performance. A high-level design description of a run-time scheduling plugin to achieve this is 

presented, as well as key results from studying its effectiveness with 4 performance metrics, using 17 application benchmarks. The results show 

that the approach can be leveraged to improve energy efficiency in scenarios where dynamic power accounts for a large component of total 

power consumption, to benefits that can be programmatically balanced with predicted performance loss. 

1. Introduction 

The goal of this whitepaper is to give an overview of the design of an energy-aware task scheduling plugin for the runtime 

component of the OmpSs programming model, and survey some key results obtained from testing it with a range of benchmarks 

for implementations of the OpenMP task construct. The paper comprises an overview of key results from the report “Energy 

Efficient Task Pool Scheduler in OmpSs”[1]. 

2. Background 

The OmpSs programming model [2] provides an implementation of the task construct similar to that introduced in OpenMP 3 

[3], enabling applications to expose parallelism through annotating code sections with their data dependencies, and relying on a 

run-time system to schedule the execution of the resulting task dependency graph at run time. It implements this division of labor 

as a compiler which generates code for its Nanos++ runtime system, which admits configuring different task scheduling policies 

by providing compliant plugins, i.e. user-provided shared library code that manipulates the mapping of tasks to threads in 

response to events such as the appearance of a new task, or the completion of the last task scheduled for a thread. Plugins may 

associate custom data structures with threads and teams of threads, which provides a means of storing and analyzing 

continuously sampled performance and energy consumption data at run time, admitting that scheduling decisions can be based on 

such parameters. 

Weissel and Bellosa [4] propose an energy-aware scheduling policy for non-realtime operating systems, which utilizes 

performance counters to determine the appropriate clock frequency for a running process. Their approach models the most 

effective clock frequency as a function of instructions per cycle (IPC) and memory requests per cycle (MRPC), and approximates 

it using a pre-computed look-up table constructed from testing six synthetic benchmarks. We take a similar approach in this 

whitepaper, with the key differences that the lookup table covers a different, greater parameter space, and that it addresses thread 

scheduling within an application program, as opposed to a granularity of processes at the operating system level. 

Spiliopoulos, Kaxiras and Keramidas [5] develop governor modules for the Linux OS kernel that regulate frequency based on 

performance counter values. The governors make predictions at 50ms intervals, aiming to minimize the Energy Delay Product 

for memory intensive applications, where reducing the processor frequency lowers the latency of memory access relative to 

computation speed. 
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3. Method 

This section describes the methods employed to design an intelligent agent that dynamically adjusts processor frequencies in 

response to a task workload generated at run-time. Section 3.1 briefly details the design of the agent itself as a scheduling plug-in 

for OmpSs, Section 3.2 describes how its precomputed lookup tables are constructed, and Section 3.3 describes experiments to 

validate its accuracy. 

3.1 Design of the scheduling plug-in 

Preliminary studies using the Barcelona OpenMP Tasks Suite (BOTS) [6] and custom synthetic benchmarks revealed that 

energy efficiency may vary not only with selected task scheduling policies, but also with thread configuration. In some cases, 

activating all available cores was beneficial, while in others, performance can stagnate or decrease with a growing number of 

cores, due to resource contention. The implementation of the Nanos++ run time system relies on POSIX threads, and the Linux 

POSIX thread library does not support thread suspend/resume operations, due to the possibility of suspending a thread while it 

holds a lock. This precludes us from taking an approach of dynamically reconfiguring threads to expose load variations to the 

operating system. Instead, we take a more explicitly programmed approach, through applying the userspace governor that allows 

user programs to explicitly set core frequencies, and extend the Nanos++ Distributed Breadth First scheduling module with a 

separate intelligent agent thread, to regulate the task distribution and adjust frequencies in response to performance counter 

measurements. 

As illustrated in Figure 1, the agent looks up frequencies in a pre-computed table, indexed by values of Instructions Per Cycle 

(IPC), Last Level Cache Misses Per Cycle (LLCMPC) as supplied by the PAPI interface [7], and the number of active cores. In a 

similar way to the approach of Weissel and Bellosa [4], this requires the table to be constructed from a representative selection of 

training benchmarks. 

 

Fig 1. Overview of the Intelligent Agent 

3.2 Generation of the look-up table 

Out of the three dimensions of the look-up table, only the number of cores is inherently discrete, so the IPC and LLCMPC 

dimensions require partitioning of their domains into bins. The granularity of this partitioning affects the potential accuracy with 

which an optimal frequency can be chosen, but this creates a trade-off with the cost of the training procedure, as the number of 

required samplings grows as the product (IPCbins ∙ LLCMPCbins ∙ Cores ∙ Frequencies), and purposefully producing every 

combination of IPC and LLCMPC would require a customized synthetic benchmark to control both independently. 

The training procedure initializes every combination of IPC, LLMPC and Cores with the highest possible frequency. A set of 

computational kernels are then executed for all available frequency and thread configurations, recording energy consumption, 
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IPC and LLCMPC. The most energy effective frequency is chosen according to an operations per Joule metric, and tabulated as 

optimal for the parameter configuration. In order to adjust table entries where the relevant parameter combination has not been 

measured, the table is updated with the constraint that no bin may list a frequency higher than any bin which represents a 

combination of higher LLCMPC, higher core count, and lower IPC value. This constraint reflects an assumption that increasing 

clock frequency introduces an energy cost with no benefit when increased parallelism adds memory traffic without improving 

performance. It serves to eliminate the artificially high frequencies that would otherwise appear in the look-up table, at parameter 

combinations not produced by the training set. Training was performed using a selection of 8 benchmarks listed in Table 1, 

which were chosen to reflect a variety of common application kernel behaviours (dwarfs), as identified by Asanovic et al. [8]. 

Table 1. Computational kernels used for training and verification 

Benchmark Dwarf 

Dense matrix multiplication Dense linear algebra 

Sparse matrix-vector multiplication Sparse linear algebra 
3D Stencil Structured grids 

N-body N-body methods 

FFT Spectral methods 
NQueens Backtrack and branch-and-bound 

Histogram Map reduce / unstructured grids 

Merge sort Graph traversal 

3.3 Experimental procedure 

The agent was configured to sleep for a 250ms interval, before using recorded values to predict optimal frequency for the next 

interval. In order to measure the accuracy of the approach, the average of the predicted frequencies over the course of an 

experiment was compared to the optimal frequency found for each of a set of kernels, as determined from runs at all available 

frequencies. Experiments were performed with four different criteria for optimal frequency choice: maximal operations per 

Joule, Energy Delay Product, and both metrics constrained by an additional requirement that performance cannot drop by more 

than 10% relative to maximum frequency. In addition to the benchmarks used to train the agent, an extra set was added to 

validate its accuracy independent of the bias inherent to testing with the training set. These additional benchmarks are 

categorized in Table 2. 

Table 2. Computational kernels used for verification only 

Benchmark Dwarf 

Quick Sort Graph traversal 

Reduction Map reduce / Dense linear algebra 
Black Scholes Dense linear algebra 

Vector operation Dense linear algebra 

Fibonacci Graph traversal 
Strassen Dense linear algebra 

SparseLU Sparse linear algebra 

2D Convolution Structured grids 
Unstructured 3D stencil Unstructured grids 

 

The experimental platform used is a dual-processor configuration with two 8-core Intel Xeon E5-2670 CPUs, each with 

20MB shared Level3 caches as last-level cache. The PAPI events collected were the number of instructions completed 

(PAPI_TOT_INS), Level3 cache misses (PAPI_L3_TCM) and total cycles (PAPI_TOT_CYC), which admit the derivation of 

IPC and LLCMPC figures. Energy instrumentation was accomplished by utilizing a library which reads the Sandy Bridge RAPL 

Model Specific Registers, as described in “Power instrumentation of task-based applications using model-specific registers on 

the Sandy Bridge architecture” [9]. 

4. Results 

This section presents the results obtained for the benchmark suite using 16 threads, corresponding to fully populating all 

processing cores on the test system. This selection is made because the agent’s adjustments of clock frequencies impact dynamic 

power use, and full system utilization creates the conditions where this component accounts for its greatest possible part of total 

power consumption. The tendencies described here are present, but less visible for lower degrees of parallelism also; for a 

complete review of all tested configurations, the reader is referred to [1]. Subsections 4.1 through 4.4 summarize results for each 
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of the four metrics used as optimization criteria for the intelligent agent, relating energy consumption and performance penalty to 

a baseline of running the benchmarks at maximum clock frequency with a distributed breadth-first task scheduling policy. 

Subsection 4.5 presents a measure of the accuracy of its predictions, comparing to empirically determined, optimal choices of 

constant frequency for each benchmark. 

4.1 Operations per Joule 

Achieving an optimal operation count per energy unit favors lowering frequencies regardless of the impact on performance, 

optimizing for an absolute energy gain. 

 

Fig 2. Benchmark performance and energy savings, with agent optimizing for Operations per Joule 

 

4.2 Energy Delay Product 

As the Energy Delay Product weighs energy consumption and performance equally, frequencies are not lowered unless the 

resulting energy savings are predicted to be greater than the performance degradation. Note that the sign of these magnitudes is 

chosen to visualize the trade-off between saved energy and lost performance, making performance improvements appear as 

negative values. 

 

Fig 3. Benchmark performance and energy savings, with agent optimizing for Energy Delay Product 
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4.3 Operations per Joule with performance degradation bounded to 10% 

Restricting the agent from lowering frequencies by applying a threshold value for allowed performance degradation limits the 

degree to which the agent lowers frequency, while still allowing it to respond in a great number of cases. This has the advantage 

providing a means to limit degradation with a more relaxed requirement than that of the Energy Delay Product, but comes with 

the disadvantage that inaccurate performance estimates can produce cases where the limit can be exceeded in practice.  

 

Fig 4. Benchmark performance and energy savings, with agent optimizing for Operations per Joule, 10% threshold 

 

4.4 Energy Delay Product with performance degradation bounded to 10% 

Restricting the admissible performance degradation for the Energy Delay Product restricts the number of admissible cases in a 

similar way to the description in Subsection 4.3. As observed in the results of Subsection 4.2, use of the Energy Delay Product 

already serves as a tight restriction of the frequency range employed by the agent. Accordingly, results are expected to resemble 

those shown in Subsection 4.2, and Fig. 5 validates this assumption. 

 

Fig5. Benchmark performance and energy savings, with agent optimizing for Energy Delay Product, 10% threshold 
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4.5 Accuracy of predictions 

As a complete exploration of all possible agent predictions would require a result set of exhaustively testing all frequency 

variations with every 250ms interval of run time, it is infeasible to judge predictions relative to an empirically determined 

absolute optimum. As an approximation, we present the descriptive measure of the operating frequencies chosen averaged over 

runs, compared to the constant frequency that yields the best result. Table 3 presents the relative deviation between these 

numbers, averaged over all benchmarks for each optimization metric. 

Table 3. Computational kernels used for verification only 

Metric Avg. error, training benchmarks Avg. error, unknown benchmarks 

Operations per Joule 5.20% 6.29% 

Energy Delay Product 1.34% 1.53% 
Operations per Joule, 10% threshold 2.29% 2.84% 

Energy Delay Product, 10% threshold 1.31% 1.54% 

 

5. Discussion 

The primary result visible from the results presented in Section 4 is that the intelligent agent approach can successfully 

improve energy efficiency based on monitoring the behavior of a dynamic task pool at run time. Its effectiveness is related to the 

degree of parallelism, and the tolerance for performance degradation to the benefit of saving energy. As shown in Table 3, the 

approach of training the agent with a representative set of benchmarks does introduce an expected advantage in overall accuracy 

for the chosen programs, but relative deviations form measurements of statically assigned optimal choices remain in the single-

digit percentile range. 

Restricting the tolerated performance degradation through optimizing for Energy Delay Product provides a balanced tradeoff 

between performance and energy consumption, but severely restricts the range of frequencies available to the intelligent agent on 

this particular architecture. Restricting it by means of imposing a threshold on the absolute energy consumption relative to peak 

performance increases this flexibility to admit more program cases, but this provides only approximate control, because the 

bound is imposed based on inaccurate estimates of future performance. As the effectiveness of both techniques relies on dynamic 

power being a major component of total consumption, their effectiveness relative to each other should be expected to show 

altered characteristics when employed on platforms with significantly different balance of static and dynamic power 

consumption. As the utilized test platform has relatively high idle power consumption, this is a promising observation for 

deploying the approach on hardware constructed with greater emphasis on energy efficiency. 

A noteworthy result from Figs. 3-5 is that the Histogram benchmark displays improvements in both energy and performance 

using dynamic adjustments. Further investigation of this phenomenon showed that this is due to its variable task intensity 

throughout a run. As the application runs in alternating parallel and sequential phases, the agent was able to detect intervals when 

cores remained idle, and temporarily reduce their operating frequencies, to an overall gain without significant disadvantages. A 

more detailed description of this effect can be found in [1]. 

6. Conclusions and future work 

We have described the design of an on-line task scheduling plugin for OmpSs, capable of adapting energy use to dynamic 

application behavior. Our tests demonstrated its applicability to a range of task-based benchmark programs, with attainable 

energy savings on a high-end platform, suggesting that it makes a viable approach also for more energy-constrained designs. A 

natural extension of this work would be to verify this expectation by testing the approach on a greater range of platforms. 

Extending the design of the intelligent agent to explicitly recognize hardware with heterogeneous computation resources would 

also make an interesting direction for further development. 
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